You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
374 lines
11 KiB
Fortran
374 lines
11 KiB
Fortran
!!$
|
|
!!$
|
|
!!$ MLD2P4 version 1.1
|
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
!!$ based on PSBLAS (Parallel Sparse BLAS version 2.3.1)
|
|
!!$
|
|
!!$ (C) Copyright 2008,2009
|
|
!!$
|
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
|
!!$ Alfredo Buttari University of Rome Tor Vergata
|
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
|
!!$ Daniela di Serafino Second University of Naples
|
|
!!$
|
|
!!$ Redistribution and use in source and binary forms, with or without
|
|
!!$ modification, are permitted provided that the following conditions
|
|
!!$ are met:
|
|
!!$ 1. Redistributions of source code must retain the above copyright
|
|
!!$ notice, this list of conditions and the following disclaimer.
|
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
|
!!$ documentation and/or other materials provided with the distribution.
|
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
|
!!$ not be used to endorse or promote products derived from this
|
|
!!$ software without specific written permission.
|
|
!!$
|
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
|
!!$
|
|
!!$
|
|
! File: mld_cexample_ml.f90
|
|
!
|
|
! This sample program solves a linear system by using BiCGStab coupled with
|
|
! one of the following multi-level preconditioner, as explained in Section 6.1
|
|
! of the MLD2P4 User's and Reference Guide:
|
|
! - choice = 1, default multi-level Schwarz preconditioner (Sec. 6.1, Fig. 2)
|
|
! - choice = 2, hybrid three-level Schwarz preconditioner (Sec. 6.1, Fig. 3)
|
|
! - choice = 3, additive three-level Schwarz preconditioner (Sec. 6.1, Fig. 4)
|
|
!
|
|
! The matrix and the rhs are read from files (if an rhs is not available, the
|
|
! unit rhs is set).
|
|
!
|
|
program mld_cexample_ml
|
|
use psb_sparse_mod
|
|
use mld_prec_mod
|
|
use psb_krylov_mod
|
|
use psb_util_mod
|
|
use data_input
|
|
|
|
implicit none
|
|
|
|
! input file parameters
|
|
character(len=40) :: mtrx_file, rhs_file
|
|
character(len=2) :: filefmt
|
|
|
|
! sparse matrices
|
|
type(psb_cspmat_type) :: A, aux_A
|
|
|
|
! descriptor of sparse matrices
|
|
type(psb_desc_type):: desc_A
|
|
|
|
! preconditioner
|
|
type(mld_cprec_type) :: P
|
|
|
|
! right-hand side, solution and residual vectors
|
|
complex(psb_spk_), allocatable , save :: b(:), x(:), r(:), &
|
|
& x_glob(:), r_glob(:)
|
|
complex(psb_spk_), allocatable, target :: aux_b(:,:)
|
|
complex(psb_spk_), pointer :: b_glob(:)
|
|
|
|
! solver and preconditioner parameters
|
|
real(psb_spk_) :: tol, err
|
|
integer :: itmax, iter, istop
|
|
integer :: nlev
|
|
|
|
! parallel environment parameters
|
|
integer :: ictxt, iam, np
|
|
|
|
! other variables
|
|
integer :: choice
|
|
integer :: i,info,j,m_problem
|
|
integer :: ierr, ircode
|
|
integer(psb_long_int_k_) :: amatsize, precsize, descsize
|
|
real(psb_dpk_) :: t1, t2, tprec
|
|
real(psb_spk_) :: resmx, resmxp
|
|
character(len=20) :: name
|
|
integer, parameter :: iunit=12
|
|
|
|
! initialize the parallel environment
|
|
|
|
call psb_init(ictxt)
|
|
call psb_info(ictxt,iam,np)
|
|
|
|
if (iam < 0) then
|
|
! This should not happen, but just in case
|
|
call psb_exit(ictxt)
|
|
stop
|
|
endif
|
|
|
|
name='mld_cexample_ml'
|
|
if(psb_get_errstatus() /= 0) goto 9999
|
|
info=0
|
|
call psb_set_errverbosity(2)
|
|
|
|
! get parameters
|
|
|
|
call get_parms(ictxt,mtrx_file,rhs_file,filefmt,choice,itmax,tol)
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
|
|
! read and assemble the matrix A and the right-hand side b
|
|
! using PSBLAS routines for sparse matrix / vector management
|
|
|
|
if (iam==psb_root_) then
|
|
select case(psb_toupper(filefmt))
|
|
case('MM')
|
|
! For Matrix Market we have an input file for the matrix
|
|
! and an (optional) second file for the RHS.
|
|
call mm_mat_read(aux_a,info,iunit=iunit,filename=mtrx_file)
|
|
if (info == 0) then
|
|
if (rhs_file /= 'NONE') then
|
|
call mm_vet_read(aux_b,info,iunit=iunit,filename=rhs_file)
|
|
end if
|
|
end if
|
|
|
|
case ('HB')
|
|
! For Harwell-Boeing we have a single file which may or may not
|
|
! contain an RHS.
|
|
call hb_read(aux_a,info,iunit=iunit,b=aux_b,filename=mtrx_file)
|
|
|
|
case default
|
|
info = -1
|
|
write(0,*) 'Wrong choice for fileformat ', filefmt
|
|
end select
|
|
if (info /= 0) then
|
|
write(0,*) 'Error while reading input matrix '
|
|
call psb_abort(ictxt)
|
|
end if
|
|
|
|
m_problem = aux_a%m
|
|
call psb_bcast(ictxt,m_problem)
|
|
|
|
! At this point aux_b may still be unallocated
|
|
if (psb_size(aux_b,1)==m_problem) then
|
|
! if any rhs were present, broadcast the first one
|
|
write(0,'("Ok, got an rhs ")')
|
|
b_glob =>aux_b(:,1)
|
|
else
|
|
write(*,'("Generating an rhs...")')
|
|
write(*,'(" ")')
|
|
call psb_realloc(m_problem,1,aux_b,ircode)
|
|
if (ircode /= 0) then
|
|
call psb_errpush(4000,name)
|
|
goto 9999
|
|
endif
|
|
|
|
b_glob => aux_b(:,1)
|
|
do i=1, m_problem
|
|
b_glob(i) = 1.d0
|
|
enddo
|
|
endif
|
|
call psb_bcast(ictxt,b_glob(1:m_problem))
|
|
else
|
|
call psb_bcast(ictxt,m_problem)
|
|
call psb_realloc(m_problem,1,aux_b,ircode)
|
|
if (ircode /= 0) then
|
|
call psb_errpush(4000,name)
|
|
goto 9999
|
|
endif
|
|
b_glob =>aux_b(:,1)
|
|
call psb_bcast(ictxt,b_glob(1:m_problem))
|
|
end if
|
|
|
|
call psb_barrier(ictxt)
|
|
if (iam==psb_root_) write(*,'("Partition type: block")')
|
|
call psb_matdist(aux_A, A, ictxt, &
|
|
& desc_A,b_glob,b,info, parts=part_block)
|
|
|
|
t2 = psb_wtime() - t1
|
|
|
|
call psb_amx(ictxt, t2)
|
|
|
|
if (iam==psb_root_) then
|
|
write(*,'(" ")')
|
|
write(*,'("Time to read and partition matrix : ",es12.5)')t2
|
|
write(*,'(" ")')
|
|
end if
|
|
|
|
select case(choice)
|
|
|
|
case(1)
|
|
|
|
! initialize the default multi-level preconditioner, i.e. hybrid
|
|
! Schwarz, using RAS (with overlap 1 and ILU(0) on the blocks)
|
|
! as post-smoother and 4 block-Jacobi sweeps (with UMFPACK LU
|
|
! on the blocks) as distributed coarse-level solver
|
|
|
|
call mld_precinit(P,'ML',info)
|
|
|
|
case(2)
|
|
|
|
! set a three-level hybrid Schwarz preconditioner, which uses
|
|
! block Jacobi (with ILU(0) on the blocks) as post-smoother,
|
|
! a coarsest matrix replicated on the processors, and the
|
|
! LU factorization from UMFPACK as coarse-level solver
|
|
|
|
call mld_precinit(P,'ML',info,nlev=3)
|
|
call mld_precset(P,mld_smoother_type_,'BJAC',info)
|
|
call mld_precset(P,mld_coarse_mat_,'REPL',info)
|
|
call mld_precset(P,mld_coarse_solve_,'UMF',info)
|
|
|
|
case(3)
|
|
|
|
! set a three-level additive Schwarz preconditioner, which uses
|
|
! RAS (with overlap 1 and ILU(0) on the blocks) as pre- and
|
|
! post-smoother, and 5 block-Jacobi sweeps (with UMFPACK LU
|
|
! on the blocks) as distributed coarsest-level solver
|
|
|
|
call mld_precinit(P,'ML',info,nlev=3)
|
|
call mld_precset(P,mld_ml_type_,'ADD',info)
|
|
call mld_precset(P,mld_smoother_pos_,'TWOSIDE',info)
|
|
call mld_precset(P,mld_coarse_sweeps_,5,info)
|
|
|
|
end select
|
|
|
|
! build the preconditioner
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
|
|
call mld_precbld(A,desc_A,P,info)
|
|
|
|
tprec = psb_wtime()-t1
|
|
call psb_amx(ictxt, tprec)
|
|
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='psb_precbld')
|
|
goto 9999
|
|
end if
|
|
|
|
! set the initial guess
|
|
|
|
call psb_geall(x,desc_A,info)
|
|
x(:) =0.0
|
|
call psb_geasb(x,desc_A,info)
|
|
|
|
! solve Ax=b with preconditioned BiCGSTAB
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
|
|
call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info,itmax,iter,err,itrace=1,istop=2)
|
|
|
|
t2 = psb_wtime() - t1
|
|
call psb_amx(ictxt,t2)
|
|
|
|
call psb_geall(r,desc_A,info)
|
|
r(:) =0.0
|
|
call psb_geasb(r,desc_A,info)
|
|
call psb_geaxpby(cone,b,czero,r,desc_A,info)
|
|
call psb_spmm(-cone,A,x,cone,r,desc_A,info)
|
|
call psb_genrm2s(resmx,r,desc_A,info)
|
|
call psb_geamaxs(resmxp,r,desc_A,info)
|
|
|
|
amatsize = psb_sizeof(A)
|
|
descsize = psb_sizeof(desc_A)
|
|
precsize = mld_sizeof(P)
|
|
call psb_sum(ictxt,amatsize)
|
|
call psb_sum(ictxt,descsize)
|
|
call psb_sum(ictxt,precsize)
|
|
|
|
call mld_precdescr(P,info)
|
|
|
|
if (iam==psb_root_) then
|
|
write(*,'(" ")')
|
|
write(*,'("Matrix: ",A)')mtrx_file
|
|
write(*,'("Computed solution on ",i8," processors")')np
|
|
write(*,'("Iterations to convergence : ",i6)')iter
|
|
write(*,'("Error estimate on exit : ",es12.5)')err
|
|
write(*,'("Time to build prec. : ",es12.5)')tprec
|
|
write(*,'("Time to solve system : ",es12.5)')t2
|
|
write(*,'("Time per iteration : ",es12.5)')t2/(iter)
|
|
write(*,'("Total time : ",es12.5)')t2+tprec
|
|
write(*,'("Residual 2-norm : ",es12.5)')resmx
|
|
write(*,'("Residual inf-norm : ",es12.5)')resmxp
|
|
write(*,'("Total memory occupation for A : ",i12)')amatsize
|
|
write(*,'("Total memory occupation for DESC_A : ",i12)')descsize
|
|
write(*,'("Total memory occupation for PREC : ",i12)')precsize
|
|
end if
|
|
|
|
allocate(x_glob(m_problem),r_glob(m_problem),stat=ierr)
|
|
if (ierr /= 0) then
|
|
write(0,*) 'allocation error: no data collection'
|
|
else
|
|
call psb_gather(x_glob,x,desc_A,info,root=psb_root_)
|
|
call psb_gather(r_glob,r,desc_A,info,root=psb_root_)
|
|
if (iam==psb_root_) then
|
|
write(0,'(" ")')
|
|
write(0,'("Saving x on file")')
|
|
write(20,*) 'matrix: ',mtrx_file
|
|
write(20,*) 'computed solution on ',np,' processors.'
|
|
write(20,*) 'iterations to convergence: ',iter
|
|
write(20,*) 'error estimate (infinity norm) on exit:', &
|
|
& ' ||r||/(||a||||x||+||b||) = ',err
|
|
write(20,*) 'max residual = ',resmx, resmxp
|
|
write(20,'(a8,4(2x,a20))') 'I','X(I)','R(I)','B(I)'
|
|
do i=1,m_problem
|
|
write(20,998) i,x_glob(i),r_glob(i),b_glob(i)
|
|
enddo
|
|
end if
|
|
end if
|
|
998 format(i8,4(2x,g20.14))
|
|
993 format(i6,4(1x,e12.6))
|
|
|
|
! deallocate the data structures
|
|
|
|
call psb_gefree(b, desc_A,info)
|
|
call psb_gefree(x, desc_A,info)
|
|
call psb_spfree(A, desc_A,info)
|
|
call mld_precfree(P,info)
|
|
call psb_cdfree(desc_A,info)
|
|
|
|
9999 continue
|
|
if(info /= 0) then
|
|
call psb_error(ictxt)
|
|
end if
|
|
call psb_exit(ictxt)
|
|
stop
|
|
|
|
contains
|
|
!
|
|
! get parameters from standard input
|
|
!
|
|
subroutine get_parms(ictxt,mtrx,rhs,filefmt,choice,itmax,tol)
|
|
|
|
use psb_sparse_mod
|
|
implicit none
|
|
|
|
integer :: ictxt, choice, itmax
|
|
real(psb_spk_) :: tol
|
|
character(len=*) :: mtrx, rhs,filefmt
|
|
integer :: iam, np
|
|
|
|
call psb_info(ictxt,iam,np)
|
|
|
|
if (iam==psb_root_) then
|
|
! read input parameters
|
|
call read_data(mtrx,5)
|
|
call read_data(rhs,5)
|
|
call read_data(filefmt,5)
|
|
call read_data(choice,5)
|
|
call read_data(itmax,5)
|
|
call read_data(tol,5)
|
|
end if
|
|
|
|
call psb_bcast(ictxt,mtrx)
|
|
call psb_bcast(ictxt,rhs)
|
|
call psb_bcast(ictxt,filefmt)
|
|
call psb_bcast(ictxt,choice)
|
|
call psb_bcast(ictxt,itmax)
|
|
call psb_bcast(ictxt,tol)
|
|
|
|
end subroutine get_parms
|
|
end program mld_cexample_ml
|