You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
700 lines
22 KiB
Fortran
700 lines
22 KiB
Fortran
!!$
|
|
!!$
|
|
!!$ MLD2P4 version 2.0
|
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
!!$ based on PSBLAS (Parallel Sparse BLAS version 3.0)
|
|
!!$
|
|
!!$ (C) Copyright 2008,2009,2010,2012
|
|
!!$
|
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
|
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
|
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
|
!!$ Daniela di Serafino Second University of Naples
|
|
!!$
|
|
!!$ Redistribution and use in source and binary forms, with or without
|
|
!!$ modification, are permitted provided that the following conditions
|
|
!!$ are met:
|
|
!!$ 1. Redistributions of source code must retain the above copyright
|
|
!!$ notice, this list of conditions and the following disclaimer.
|
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
|
!!$ documentation and/or other materials provided with the distribution.
|
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
|
!!$ not be used to endorse or promote products derived from this
|
|
!!$ software without specific written permission.
|
|
!!$
|
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
|
!!$
|
|
!!$
|
|
! File: mld_daggrmat_minnrg_asb.F90
|
|
!
|
|
! Subroutine: mld_daggrmat_minnrg_asb
|
|
! Version: real
|
|
!
|
|
! This routine builds a coarse-level matrix A_C from a fine-level matrix A
|
|
! by using the Galerkin approach, i.e.
|
|
!
|
|
! A_C = P_C^T A P_C,
|
|
!
|
|
! where P_C is a prolongator from the coarse level to the fine one.
|
|
!
|
|
! The prolongator P_C is built according to a smoothed aggregation algorithm,
|
|
! i.e. it is obtained by applying a damped Jacobi smoother to the piecewise
|
|
! constant interpolation operator P corresponding to the fine-to-coarse level
|
|
! mapping built by the mld_aggrmap_bld subroutine:
|
|
!
|
|
! P_C = (I - omega*D^(-1)A) * P,
|
|
!
|
|
! where D is the diagonal matrix with main diagonal equal to the main diagonal
|
|
! of A, and omega is a suitable smoothing parameter. An estimate of the spectral
|
|
! radius of D^(-1)A, to be used in the computation of omega, is provided,
|
|
! according to the value of p%parms%aggr_omega_alg, specified by the user
|
|
! through mld_dprecinit and mld_dprecset.
|
|
!
|
|
! This routine can also build A_C according to a "bizarre" aggregation algorithm,
|
|
! using a "naive" prolongator proposed by the authors of MLD2P4. However, this
|
|
! prolongator still requires a deep analysis and testing and its use is not
|
|
! recommended.
|
|
!
|
|
! The coarse-level matrix A_C is distributed among the parallel processes or
|
|
! replicated on each of them, according to the value of p%parms%coarse_mat,
|
|
! specified by the user through mld_dprecinit and mld_zprecset.
|
|
!
|
|
! For more details see
|
|
! M. Brezina and P. Vanek, A black-box iterative solver based on a
|
|
! two-level Schwarz method, Computing, 63 (1999), 233-263.
|
|
! P. D'Ambra, D. di Serafino and S. Filippone, On the development of
|
|
! PSBLAS-based parallel two-level Schwarz preconditioners, Appl. Num. Math.
|
|
! 57 (2007), 1181-1196.
|
|
!
|
|
! Arguments:
|
|
! a - type(psb_dspmat_type), input.
|
|
! The sparse matrix structure containing the local part of
|
|
! the fine-level matrix.
|
|
! desc_a - type(psb_desc_type), input.
|
|
! The communication descriptor of the fine-level matrix.
|
|
! p - type(mld_d_onelev_type), input/output.
|
|
! The 'one-level' data structure that will contain the local
|
|
! part of the matrix to be built as well as the information
|
|
! concerning the prolongator and its transpose.
|
|
! ilaggr - integer, dimension(:), allocatable.
|
|
! The mapping between the row indices of the coarse-level
|
|
! matrix and the row indices of the fine-level matrix.
|
|
! ilaggr(i)=j means that node i in the adjacency graph
|
|
! of the fine-level matrix is mapped onto node j in the
|
|
! adjacency graph of the coarse-level matrix.
|
|
! nlaggr - integer, dimension(:), allocatable.
|
|
! nlaggr(i) contains the aggregates held by process i.
|
|
! info - integer, output.
|
|
! Error code.
|
|
!
|
|
subroutine mld_daggrmat_minnrg_asb(a,desc_a,ilaggr,nlaggr,parms,ac,op_prol,op_restr,info)
|
|
use psb_base_mod
|
|
use mld_d_inner_mod, mld_protect_name => mld_daggrmat_minnrg_asb
|
|
|
|
implicit none
|
|
|
|
! Arguments
|
|
type(psb_dspmat_type), intent(in) :: a
|
|
type(psb_desc_type), intent(in) :: desc_a
|
|
integer, intent(inout) :: ilaggr(:), nlaggr(:)
|
|
type(mld_dml_parms), intent(inout) :: parms
|
|
type(psb_dspmat_type), intent(out) :: ac,op_prol,op_restr
|
|
integer, intent(out) :: info
|
|
|
|
! Local variables
|
|
integer(psb_mpik_), allocatable :: nzbr(:), idisp(:)
|
|
integer :: nrow, nglob, ncol, ntaggr, nzac, ip, ndx,&
|
|
& naggr, nzl,naggrm1,naggrp1, i, j, k, jd, icolF, nrt
|
|
integer :: ictxt,np,me, err_act, icomm
|
|
character(len=20) :: name
|
|
type(psb_dspmat_type) :: af, ptilde, rtilde, atran, atp, atdatp
|
|
type(psb_dspmat_type) :: am3,am4, ap, adap,atmp,rada, ra, atmp2, dap, dadap, da
|
|
type(psb_dspmat_type) :: dat, datp, datdatp, atmp3
|
|
type(psb_d_coo_sparse_mat) :: tmpcoo
|
|
type(psb_d_csr_sparse_mat) :: acsr1, acsr2, acsr3, acsr, acsrf
|
|
type(psb_d_csc_sparse_mat) :: csc_dap, csc_dadap, csc_datp, csc_datdatp, acsc
|
|
real(psb_dpk_), allocatable :: adiag(:), adinv(:)
|
|
real(psb_dpk_), allocatable :: omf(:), omp(:), omi(:), oden(:)
|
|
logical :: filter_mat
|
|
integer(psb_ipk_) :: ierr(5)
|
|
integer :: debug_level, debug_unit
|
|
integer, parameter :: ncmax=16
|
|
real(psb_dpk_) :: anorm, theta
|
|
real(psb_dpk_) :: tmp, alpha, beta, ommx
|
|
|
|
name='mld_aggrmat_minnrg'
|
|
if(psb_get_errstatus().ne.0) return
|
|
info=psb_success_
|
|
call psb_erractionsave(err_act)
|
|
debug_unit = psb_get_debug_unit()
|
|
debug_level = psb_get_debug_level()
|
|
|
|
ictxt = desc_a%get_context()
|
|
icomm = desc_a%get_mpic()
|
|
ictxt = desc_a%get_context()
|
|
|
|
call psb_info(ictxt, me, np)
|
|
|
|
nglob = desc_a%get_global_rows()
|
|
nrow = desc_a%get_local_rows()
|
|
ncol = desc_a%get_local_cols()
|
|
|
|
theta = parms%aggr_thresh
|
|
|
|
naggr = nlaggr(me+1)
|
|
ntaggr = sum(nlaggr)
|
|
|
|
allocate(nzbr(np), idisp(np),stat=info)
|
|
if (info /= psb_success_) then
|
|
info=psb_err_alloc_request_; ierr(1)=2*np;
|
|
call psb_errpush(info,name,i_err=ierr,a_err='integer')
|
|
goto 9999
|
|
end if
|
|
|
|
naggrm1 = sum(nlaggr(1:me))
|
|
naggrp1 = sum(nlaggr(1:me+1))
|
|
|
|
filter_mat = (parms%aggr_filter == mld_filter_mat_)
|
|
|
|
ilaggr(1:nrow) = ilaggr(1:nrow) + naggrm1
|
|
call psb_halo(ilaggr,desc_a,info)
|
|
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_halo')
|
|
goto 9999
|
|
end if
|
|
|
|
! naggr: number of local aggregates
|
|
! nrow: local rows.
|
|
!
|
|
allocate(adiag(ncol),adinv(ncol),&
|
|
& omf(ncol),omp(ntaggr),oden(ntaggr),omi(ncol),stat=info)
|
|
|
|
if (info /= psb_success_) then
|
|
info=psb_err_alloc_request_; ierr(1)=6*ncol+ntaggr;
|
|
call psb_errpush(info,name,i_err=ierr,a_err='real(psb_dpk_)')
|
|
goto 9999
|
|
end if
|
|
|
|
! Get the diagonal D
|
|
call a%get_diag(adiag,info)
|
|
if (info == psb_success_) &
|
|
& call psb_halo(adiag,desc_a,info)
|
|
|
|
do i=1,size(adiag)
|
|
if (adiag(i) /= dzero) then
|
|
adinv(i) = done / adiag(i)
|
|
else
|
|
adinv(i) = done
|
|
end if
|
|
end do
|
|
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='sp_getdiag')
|
|
goto 9999
|
|
end if
|
|
|
|
|
|
! 1. Allocate Ptilde in sparse matrix form
|
|
call tmpcoo%allocate(ncol,ntaggr,ncol)
|
|
do i=1,ncol
|
|
tmpcoo%val(i) = done
|
|
tmpcoo%ia(i) = i
|
|
tmpcoo%ja(i) = ilaggr(i)
|
|
end do
|
|
call tmpcoo%set_nzeros(ncol)
|
|
call tmpcoo%set_dupl(psb_dupl_add_)
|
|
call tmpcoo%set_asb()
|
|
call ptilde%mv_from(tmpcoo)
|
|
call ptilde%cscnv(info,type='csr')
|
|
|
|
!!$ call local_dump(me,ptilde,'csr-ptilde','Ptilde-1')
|
|
|
|
if (info == psb_success_) call a%cscnv(am3,info,type='csr',dupl=psb_dupl_add_)
|
|
if (info == psb_success_) call a%cscnv(da,info,type='csr',dupl=psb_dupl_add_)
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='spcnv')
|
|
goto 9999
|
|
end if
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& ' Initial copies done.'
|
|
|
|
call da%scal(adinv,info)
|
|
|
|
call psb_symbmm(da,ptilde,dap,info)
|
|
if (info == psb_success_) call psb_numbmm(da,ptilde,dap)
|
|
|
|
if(info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='symbmm 1')
|
|
goto 9999
|
|
end if
|
|
|
|
call dap%clone(atmp,info)
|
|
|
|
call psb_sphalo(atmp,desc_a,am4,info,&
|
|
& colcnv=.false.,rowscale=.true.,outfmt='CSR ')
|
|
if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=am4)
|
|
if (info == psb_success_) call am4%free()
|
|
|
|
call psb_symbmm(da,atmp,dadap,info)
|
|
call psb_numbmm(da,atmp,dadap)
|
|
call atmp%free()
|
|
|
|
! !$ write(0,*) 'Columns of AP',psb_sp_get_ncols(ap)
|
|
! !$ write(0,*) 'Columns of ADAP',psb_sp_get_ncols(adap)
|
|
call dap%mv_to(csc_dap)
|
|
call dadap%mv_to(csc_dadap)
|
|
|
|
|
|
call csc_mat_col_prod(csc_dap,csc_dadap,omp,info)
|
|
call csc_mat_col_prod(csc_dadap,csc_dadap,oden,info)
|
|
call psb_sum(ictxt,omp)
|
|
call psb_sum(ictxt,oden)
|
|
! !$ write(0,*) trim(name),' OMP :',omp
|
|
! !$ write(0,*) trim(name),' ODEN:',oden
|
|
|
|
omp = omp/oden
|
|
|
|
! !$ write(0,*) 'Check on output prolongator ',omp(1:min(size(omp),10))
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'Done NUMBMM 1'
|
|
|
|
call am3%mv_to(acsr3)
|
|
! Compute omega_int
|
|
ommx = cmplx(dzero,dzero)
|
|
do i=1, ncol
|
|
omi(i) = omp(ilaggr(i))
|
|
if(abs(omi(i)) .gt. abs(ommx)) ommx = omi(i)
|
|
end do
|
|
! Compute omega_fine
|
|
do i=1, nrow
|
|
omf(i) = ommx
|
|
do j=acsr3%irp(i),acsr3%irp(i+1)-1
|
|
if(abs(omi(acsr3%ja(j))) .lt. abs(omf(i))) omf(i)=omi(acsr3%ja(j))
|
|
end do
|
|
!!$ if(min(real(omf(i)),aimag(omf(i))) < dzero) omf(i) = dzero
|
|
if(psb_minreal(omf(i)) < dzero) omf(i) = dzero
|
|
end do
|
|
|
|
omf(1:nrow) = omf(1:nrow) * adinv(1:nrow)
|
|
|
|
if (filter_mat) then
|
|
!
|
|
! Build the filtered matrix Af from A
|
|
!
|
|
call a%cscnv(acsrf,info,dupl=psb_dupl_add_)
|
|
|
|
do i=1,nrow
|
|
tmp = dzero
|
|
jd = -1
|
|
do j=acsrf%irp(i),acsrf%irp(i+1)-1
|
|
if (acsrf%ja(j) == i) jd = j
|
|
if (abs(acsrf%val(j)) < theta*sqrt(abs(adiag(i)*adiag(acsrf%ja(j))))) then
|
|
tmp=tmp+acsrf%val(j)
|
|
acsrf%val(j)=dzero
|
|
endif
|
|
enddo
|
|
if (jd == -1) then
|
|
write(0,*) 'Wrong input: we need the diagonal!!!!', i
|
|
else
|
|
acsrf%val(jd)=acsrf%val(jd)-tmp
|
|
end if
|
|
enddo
|
|
! Take out zeroed terms
|
|
call acsrf%mv_to_coo(tmpcoo,info)
|
|
k = 0
|
|
do j=1,tmpcoo%get_nzeros()
|
|
if ((tmpcoo%val(j) /= dzero) .or. (tmpcoo%ia(j) == tmpcoo%ja(j))) then
|
|
k = k + 1
|
|
tmpcoo%val(k) = tmpcoo%val(j)
|
|
tmpcoo%ia(k) = tmpcoo%ia(j)
|
|
tmpcoo%ja(k) = tmpcoo%ja(j)
|
|
end if
|
|
end do
|
|
call tmpcoo%set_nzeros(k)
|
|
call acsrf%mv_from_coo(tmpcoo,info)
|
|
|
|
!
|
|
! Build the smoothed prolongator using the filtered matrix
|
|
!
|
|
do i=1,acsrf%get_nrows()
|
|
do j=acsrf%irp(i),acsrf%irp(i+1)-1
|
|
if (acsrf%ja(j) == i) then
|
|
acsrf%val(j) = done - omf(i)*acsrf%val(j)
|
|
else
|
|
acsrf%val(j) = - omf(i)*acsrf%val(j)
|
|
end if
|
|
end do
|
|
end do
|
|
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'Done gather, going for SYMBMM 1'
|
|
|
|
call af%mv_from(acsrf)
|
|
!
|
|
! Symbmm90 does the allocation for its result.
|
|
!
|
|
! op_prol = (I-w*D*Af)Ptilde
|
|
! Doing it this way means to consider diag(Af_i)
|
|
!
|
|
!
|
|
call psb_symbmm(af,ptilde,op_prol,info)
|
|
if(info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='symbmm 1')
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_numbmm(af,ptilde,op_prol)
|
|
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'Done NUMBMM 1'
|
|
else
|
|
!
|
|
! Build the smoothed prolongator using the original matrix
|
|
!
|
|
do i=1,acsr3%get_nrows()
|
|
do j=acsr3%irp(i),acsr3%irp(i+1)-1
|
|
if (acsr3%ja(j) == i) then
|
|
acsr3%val(j) = done - omf(i)*acsr3%val(j)
|
|
else
|
|
acsr3%val(j) = - omf(i)*acsr3%val(j)
|
|
end if
|
|
end do
|
|
end do
|
|
|
|
call am3%mv_from(acsr3)
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'Done gather, going for SYMBMM 1'
|
|
!
|
|
! Symbmm90 does the allocation for its result.
|
|
!
|
|
! op_prol = (I-w*D*A)Ptilde
|
|
!
|
|
!
|
|
call psb_symbmm(am3,ptilde,op_prol,info)
|
|
if(info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='symbmm 1')
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_numbmm(am3,ptilde,op_prol)
|
|
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'Done NUMBMM 1'
|
|
|
|
end if
|
|
|
|
|
|
!
|
|
! Ok, let's start over with the restrictor
|
|
!
|
|
call ptilde%transc(rtilde)
|
|
call a%cscnv(atmp,info,type='csr')
|
|
call psb_sphalo(atmp,desc_a,am4,info,&
|
|
& colcnv=.true.,rowscale=.true.)
|
|
nrt = am4%get_nrows()
|
|
call am4%csclip(atmp2,info,1,nrt,1,ncol)
|
|
call atmp2%cscnv(info,type='CSR')
|
|
if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=atmp2)
|
|
call am4%free()
|
|
call atmp2%free()
|
|
|
|
! This is to compute the transpose. It ONLY works if the
|
|
! original A has a symmetric pattern.
|
|
call atmp%transc(atmp2)
|
|
call atmp2%csclip(dat,info,1,nrow,1,ncol)
|
|
call dat%cscnv(info,type='csr')
|
|
call dat%scal(adinv,info)
|
|
|
|
! Now for the product.
|
|
call psb_symbmm(dat,ptilde,datp,info)
|
|
if (info == psb_success_) call psb_numbmm(dat,ptilde,datp)
|
|
|
|
call datp%clone(atmp2,info)
|
|
call psb_sphalo(atmp2,desc_a,am4,info,&
|
|
& colcnv=.false.,rowscale=.true.,outfmt='CSR ')
|
|
if (info == psb_success_) call psb_rwextd(ncol,atmp2,info,b=am4)
|
|
if (info == psb_success_) call am4%free()
|
|
|
|
|
|
call psb_symbmm(dat,atmp2,datdatp,info)
|
|
call psb_numbmm(dat,atmp2,datdatp)
|
|
call atmp2%free()
|
|
|
|
call datp%mv_to(csc_datp)
|
|
call datdatp%mv_to(csc_datdatp)
|
|
|
|
call csc_mat_col_prod(csc_datp,csc_datdatp,omp,info)
|
|
call csc_mat_col_prod(csc_datdatp,csc_datdatp,oden,info)
|
|
call psb_sum(ictxt,omp)
|
|
call psb_sum(ictxt,oden)
|
|
|
|
|
|
! !$ write(debug_unit,*) trim(name),' OMP_R :',omp
|
|
! ! $ write(debug_unit,*) trim(name),' ODEN_R:',oden
|
|
omp = omp/oden
|
|
! !$ write(0,*) 'Check on output restrictor',omp(1:min(size(omp),10))
|
|
! Compute omega_int
|
|
ommx = cmplx(dzero,dzero)
|
|
do i=1, ncol
|
|
omi(i) = omp(ilaggr(i))
|
|
if(abs(omi(i)) .gt. abs(ommx)) ommx = omi(i)
|
|
end do
|
|
! Compute omega_fine
|
|
! Going over the columns of atmp means going over the rows
|
|
! of A^T. Hopefully ;-)
|
|
call atmp%cp_to(acsc)
|
|
|
|
do i=1, nrow
|
|
omf(i) = ommx
|
|
do j= acsc%icp(i),acsc%icp(i+1)-1
|
|
if(abs(omi(acsc%ia(j))) .lt. abs(omf(i))) omf(i)=omi(acsc%ia(j))
|
|
end do
|
|
!!$ if(min(real(omf(i)),aimag(omf(i))) < dzero) omf(i) = dzero
|
|
if(psb_minreal(omf(i)) < dzero) omf(i) = dzero
|
|
end do
|
|
omf(1:nrow) = omf(1:nrow)*adinv(1:nrow)
|
|
call psb_halo(omf,desc_a,info)
|
|
call acsc%free()
|
|
|
|
|
|
call atmp%mv_to(acsr1)
|
|
|
|
do i=1,acsr1%get_nrows()
|
|
do j=acsr1%irp(i),acsr1%irp(i+1)-1
|
|
if (acsr1%ja(j) == i) then
|
|
acsr1%val(j) = done - acsr1%val(j)*omf(acsr1%ja(j))
|
|
else
|
|
acsr1%val(j) = - acsr1%val(j)*omf(acsr1%ja(j))
|
|
end if
|
|
end do
|
|
end do
|
|
call atmp%mv_from(acsr1)
|
|
|
|
call rtilde%mv_to(tmpcoo)
|
|
nzl = tmpcoo%get_nzeros()
|
|
i=0
|
|
do k=1, nzl
|
|
if ((naggrm1 < tmpcoo%ia(k)) .and. (tmpcoo%ia(k) <= naggrp1)) then
|
|
i = i+1
|
|
tmpcoo%val(i) = tmpcoo%val(k)
|
|
tmpcoo%ia(i) = tmpcoo%ia(k)
|
|
tmpcoo%ja(i) = tmpcoo%ja(k)
|
|
end if
|
|
end do
|
|
call tmpcoo%set_nzeros(i)
|
|
call rtilde%mv_from(tmpcoo)
|
|
call rtilde%cscnv(info,type='csr')
|
|
|
|
call psb_symbmm(rtilde,atmp,op_restr,info)
|
|
call psb_numbmm(rtilde,atmp,op_restr)
|
|
|
|
!
|
|
! Now we have to gather the halo of op_prol, and add it to itself
|
|
! to multiply it by A,
|
|
!
|
|
call psb_sphalo(op_prol,desc_a,am4,info,&
|
|
& colcnv=.false.,rowscale=.true.)
|
|
if (info == psb_success_) call psb_rwextd(ncol,op_prol,info,b=am4)
|
|
if (info == psb_success_) call am4%free()
|
|
|
|
if(info /= psb_success_) then
|
|
call psb_errpush(psb_err_internal_error_,name,a_err='Halo of op_prol')
|
|
goto 9999
|
|
end if
|
|
|
|
!
|
|
! Now we have to fix this. The only rows of B that are correct
|
|
! are those corresponding to "local" aggregates, i.e. indices in ilaggr(:)
|
|
!
|
|
call op_restr%mv_to(tmpcoo)
|
|
|
|
nzl = tmpcoo%get_nzeros()
|
|
i=0
|
|
do k=1, nzl
|
|
if ((naggrm1 < tmpcoo%ia(k)) .and. (tmpcoo%ia(k) <= naggrp1)) then
|
|
i = i+1
|
|
tmpcoo%val(i) = tmpcoo%val(k)
|
|
tmpcoo%ia(i) = tmpcoo%ia(k)
|
|
tmpcoo%ja(i) = tmpcoo%ja(k)
|
|
end if
|
|
end do
|
|
call tmpcoo%set_nzeros(i)
|
|
call op_restr%mv_from(tmpcoo)
|
|
call op_restr%cscnv(info,type='csr')
|
|
|
|
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'starting sphalo/ rwxtd'
|
|
|
|
call psb_symbmm(a,op_prol,am3,info)
|
|
if(info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,&
|
|
& a_err='symbmm 2')
|
|
goto 9999
|
|
end if
|
|
call psb_numbmm(a,op_prol,am3)
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'Done NUMBMM 2'
|
|
|
|
call psb_sphalo(am3,desc_a,am4,info,&
|
|
& colcnv=.false.,rowscale=.true.)
|
|
if (info == psb_success_) call psb_rwextd(ncol,am3,info,b=am4)
|
|
if (info == psb_success_) call am4%free()
|
|
|
|
if(info /= psb_success_) then
|
|
call psb_errpush(psb_err_internal_error_,name,&
|
|
& a_err='Extend am3')
|
|
goto 9999
|
|
end if
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'Done sphalo/ rwxtd'
|
|
|
|
call psb_symbmm(op_restr,am3,ac,info)
|
|
if (info == psb_success_) call psb_numbmm(op_restr,am3,ac)
|
|
if (info == psb_success_) call am3%free()
|
|
if (info == psb_success_) call ac%cscnv(info,type='coo',dupl=psb_dupl_add_)
|
|
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_internal_error_,name,&
|
|
&a_err='Build ac = op_restr x am3')
|
|
goto 9999
|
|
end if
|
|
|
|
|
|
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& 'Done smooth_aggregate '
|
|
call psb_erractionrestore(err_act)
|
|
return
|
|
|
|
9999 continue
|
|
call psb_errpush(info,name)
|
|
call psb_erractionrestore(err_act)
|
|
if (err_act.eq.psb_act_abort_) then
|
|
call psb_error()
|
|
return
|
|
end if
|
|
return
|
|
|
|
|
|
contains
|
|
|
|
subroutine csc_mat_col_prod(a,b,v,info)
|
|
type(psb_d_csc_sparse_mat), intent(in) :: a, b
|
|
real(psb_dpk_), intent(out) :: v(:)
|
|
integer, intent(out) :: info
|
|
|
|
integer :: i,j,k, nr, nc,iap,nra,ibp,nrb
|
|
|
|
info = psb_success_
|
|
nc = a%get_ncols()
|
|
if (nc /= b%get_ncols()) then
|
|
write(0,*) 'Matrices A and B should have same columns'
|
|
info = -1
|
|
return
|
|
end if
|
|
|
|
do j=1, nc
|
|
iap = a%icp(j)
|
|
nra = a%icp(j+1)-iap
|
|
ibp = b%icp(j)
|
|
nrb = b%icp(j+1)-ibp
|
|
v(j) = sparse_srtd_dot(nra,a%ia(iap:iap+nra-1),a%val(iap:iap+nra-1),&
|
|
& nrb,b%ia(ibp:ibp+nrb-1),b%val(ibp:ibp+nrb-1))
|
|
end do
|
|
|
|
end subroutine csc_mat_col_prod
|
|
|
|
|
|
subroutine csr_mat_row_prod(a,b,v,info)
|
|
type(psb_d_csr_sparse_mat), intent(in) :: a, b
|
|
real(psb_dpk_), intent(out) :: v(:)
|
|
integer, intent(out) :: info
|
|
|
|
integer :: i,j,k, nr, nc,iap,nca,ibp,ncb
|
|
|
|
info = psb_success_
|
|
nr = a%get_nrows()
|
|
if (nr /= b%get_nrows()) then
|
|
write(0,*) 'Matrices A and B should have same rows'
|
|
info = -1
|
|
return
|
|
end if
|
|
|
|
do j=1, nr
|
|
iap = a%irp(j)
|
|
nca = a%irp(j+1)-iap
|
|
ibp = b%irp(j)
|
|
ncb = b%irp(j+1)-ibp
|
|
v(j) = sparse_srtd_dot(nca,a%ja(iap:iap+nca-1),a%val(iap:iap+nca-1),&
|
|
& ncb,b%ja(ibp:ibp+ncb-1),b%val(ibp:ibp+ncb-1))
|
|
end do
|
|
|
|
end subroutine csr_mat_row_prod
|
|
|
|
|
|
function sparse_srtd_dot(nv1,iv1,v1,nv2,iv2,v2) result(dot)
|
|
integer, intent(in) :: nv1,nv2
|
|
integer, intent(in) :: iv1(:), iv2(:)
|
|
real(psb_dpk_), intent(in) :: v1(:),v2(:)
|
|
real(psb_dpk_) :: dot
|
|
|
|
integer :: i,j,k, ip1, ip2
|
|
|
|
dot = dzero
|
|
ip1 = 1
|
|
ip2 = 1
|
|
|
|
do
|
|
if (ip1 > nv1) exit
|
|
if (ip2 > nv2) exit
|
|
if (iv1(ip1) == iv2(ip2)) then
|
|
dot = dot + (v1(ip1))*v2(ip2)
|
|
ip1 = ip1 + 1
|
|
ip2 = ip2 + 1
|
|
else if (iv1(ip1) < iv2(ip2)) then
|
|
ip1 = ip1 + 1
|
|
else
|
|
ip2 = ip2 + 1
|
|
end if
|
|
end do
|
|
|
|
end function sparse_srtd_dot
|
|
|
|
subroutine local_dump(me,mat,name,header)
|
|
type(psb_dspmat_type), intent(in) :: mat
|
|
integer, intent(in) :: me
|
|
character(len=*), intent(in) :: name
|
|
character(len=*), intent(in) :: header
|
|
character(len=80) :: filename
|
|
|
|
write(filename,'(a,a,i0,a,i0,a)') trim(name),'.p',me
|
|
open(20+me,file=filename)
|
|
call mat%print(20+me,head=trim(header))
|
|
close(20+me)
|
|
end subroutine local_dump
|
|
|
|
end subroutine mld_daggrmat_minnrg_asb
|