You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/docs/html/node14.html

290 lines
9.6 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2012 (1.2)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Smoothers and coarsest-level solvers</TITLE>
<META NAME="description" CONTENT="Smoothers and coarsest-level solvers">
<META NAME="keywords" CONTENT="userhtml">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">
<LINK REL="previous" HREF="node13.html">
<LINK REL="up" HREF="node11.html">
<LINK REL="next" HREF="node15.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html251"
HREF="node15.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
<A NAME="tex2html247"
HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
<A NAME="tex2html243"
HREF="node13.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
<A NAME="tex2html249"
HREF="node2.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html252"
HREF="node15.html">Getting Started</A>
<B> Up:</B> <A NAME="tex2html248"
HREF="node11.html">Multigrid Background</A>
<B> Previous:</B> <A NAME="tex2html244"
HREF="node13.html">Smoothed Aggregation</A>
&nbsp; <B> <A NAME="tex2html250"
HREF="node2.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION00063000000000000000"></A><A NAME="sec:smoothers"></A>
<BR>
Smoothers and coarsest-level solvers
</H2><FONT SIZE="+1"><FONT SIZE="+1"></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">The smoothers implemented in MLD2P4 include the Jacobi and block-Jacobi methods,
a hybrid version of the forward and backward Gauss-Seidel methods, and the
additive Schwarz (AS) ones (see, e.g., [<A
HREF="node29.html#Saad_book">20</A>,<A
HREF="node29.html#dd2_96">21</A>]).
</FONT></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">The hybrid Gauss-Seidel
version is considered because the original Gauss-Seidel method is inherently sequential.
At each iteration of the hybrid version, each parallel process uses the most recent values
of its own local variables and the values of the non-local variables computed at the
previous iteration, obtained by exchanging data with other processes before
the beginning of the current iteration.
</FONT></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">In the AS methods, the index space <IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"> is divided into <IMG
WIDTH="28" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$m_k$">
subsets <IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img51.png"
ALT="$\Omega^k_i$"> of size <IMG
WIDTH="32" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img52.png"
ALT="$n_{k,i}$">, possibly
overlapping. For each <IMG
WIDTH="11" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img30.png"
ALT="$i$"> we consider the restriction
operator <!-- MATH
$R_i^k \in \mathbb{R}^{n_{k,i} \times n_k}$
-->
<IMG
WIDTH="110" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img53.png"
ALT="$R_i^k \in \mathbb{R}^{n_{k,i} \times n_k}$">
that maps a vector <IMG
WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img54.png"
ALT="$x^k$"> to the vector <IMG
WIDTH="22" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img55.png"
ALT="$x_i^k$"> made of the components of <IMG
WIDTH="23" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img54.png"
ALT="$x^k$">
with indices in <IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img51.png"
ALT="$\Omega^k_i$">, and the prolongation operator
<!-- MATH
$P^k_i = (R_i^k)^T$
-->
<IMG
WIDTH="95" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$P^k_i = (R_i^k)^T$">. These operators are then used to build
<!-- MATH
$A_i^k=R_i^kA^kP_i^k$
-->
<IMG
WIDTH="113" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img57.png"
ALT="$A_i^k=R_i^kA^kP_i^k$">, which is the restriction of <IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$A^k$"> to the index
space <IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img51.png"
ALT="$\Omega^k_i$">.
The classical AS preconditioner <IMG
WIDTH="41" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img58.png"
ALT="$M^k_{AS}$"> is defined as
</FONT></FONT></FONT>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
( M^k_{AS} )^{-1} = \sum_{i=1}^{m_k} P_i^k (A_i^k)^{-1} R_i^{k},
\end{displaymath}
-->
<IMG
WIDTH="219" HEIGHT="59" BORDER="0"
SRC="img59.png"
ALT="\begin{displaymath}
( M^k_{AS} )^{-1} = \sum_{i=1}^{m_k} P_i^k (A_i^k)^{-1} R_i^{k},
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">
where <IMG
WIDTH="26" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img60.png"
ALT="$A_i^k$"> is supposed to be nonsingular. We observe that an approximate
inverse of <IMG
WIDTH="26" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img60.png"
ALT="$A_i^k$"> is usually considered instead of <IMG
WIDTH="57" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img61.png"
ALT="$(A_i^k)^{-1}$">.
The setup of <IMG
WIDTH="41" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img58.png"
ALT="$M^k_{AS}$"> during the multilevel build phase
involves
</FONT></FONT></FONT>
<UL>
<LI>the definition of the index subspaces <IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img62.png"
ALT="$\Omega_i^k$"> and of the corresponding
operators <IMG
WIDTH="26" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img63.png"
ALT="$R_i^k$"> (and <IMG
WIDTH="26" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img64.png"
ALT="$P_i^k$">);
</LI>
<LI>the computation of the submatrices <IMG
WIDTH="26" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img60.png"
ALT="$A_i^k$">;
</LI>
<LI>the computation of their inverses (usually approximated
through some form of incomplete factorization).
</LI>
</UL><FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">
The computation of <!-- MATH
$z^k=M^k_{AS}w^k$
-->
<IMG
WIDTH="102" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img65.png"
ALT="$z^k=M^k_{AS}w^k$">, with <!-- MATH
$w^k \in \mathbb{R}^{n_k}$
-->
<IMG
WIDTH="76" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img66.png"
ALT="$w^k \in \mathbb{R}^{n_k}$">, during the
multilevel application phase, requires
</FONT></FONT></FONT>
<UL>
<LI>the restriction of <IMG
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img67.png"
ALT="$w^k$"> to the subspaces <!-- MATH
$\mathbb{R}^{n_{k,i}}$
-->
<IMG
WIDTH="41" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img68.png"
ALT="$\mathbb{R}^{n_{k,i}}$">,
i.e. <!-- MATH
$w_i^k = R_i^{k} w^k$
-->
<IMG
WIDTH="91" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img69.png"
ALT="$w_i^k = R_i^{k} w^k$">;
</LI>
<LI>the computation of the vectors <!-- MATH
$z_i^k=(A_i^k)^{-1} w_i^k$
-->
<IMG
WIDTH="119" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img70.png"
ALT="$z_i^k=(A_i^k)^{-1} w_i^k$">;
</LI>
<LI>the prolongation and the sum of the previous vectors,
i.e. <!-- MATH
$z^k = \sum_{i=1}^{m_k} P_i^k z_i^k$
-->
<IMG
WIDTH="127" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img71.png"
ALT="$z^k = \sum_{i=1}^{m_k} P_i^k z_i^k$">.
</LI>
</UL><FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">
Variants of the classical AS method, which use modifications of the
restriction and prolongation operators, are also implemented in MLD2P4.
Among them, the Restricted AS (RAS) preconditioner usually
outperforms the classical AS preconditioner in terms of convergence
rate and of computation and communication time on parallel distributed-memory
computers, and is therefore the most widely used among the AS
preconditioners&nbsp;[<A
HREF="node29.html#CAI_SARKIS">6</A>].
</FONT></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">Direct solvers based on sparse LU factorizations, implemented in the
third-party libraries reported in Section&nbsp;<A HREF="node7.html#sec:third-party">3.2</A>, can be applied
as coarsest-level solvers by MLD2P4. Native inexact solvers based on
incomplete LU factorizations, as well as Jacobi, hybrid (forward) Gauss-Seidel,
and block Jacobi preconditioners are also available. Direct solvers usually
lead to more effective preconditioners in terms of algorithmic scalability;
however, this does not guarantee parallel efficiency.
</FONT></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1"></FONT></FONT></FONT><HR>
<!--Navigation Panel-->
<A NAME="tex2html251"
HREF="node15.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
<A NAME="tex2html247"
HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
<A NAME="tex2html243"
HREF="node13.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
<A NAME="tex2html249"
HREF="node2.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html252"
HREF="node15.html">Getting Started</A>
<B> Up:</B> <A NAME="tex2html248"
HREF="node11.html">Multigrid Background</A>
<B> Previous:</B> <A NAME="tex2html244"
HREF="node13.html">Smoothed Aggregation</A>
&nbsp; <B> <A NAME="tex2html250"
HREF="node2.html">Contents</A></B>
<!--End of Navigation Panel-->
</BODY>
</HTML>