You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/docs/html/node13.html

402 lines
13 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2012 (1.2)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Smoothed Aggregation</TITLE>
<META NAME="description" CONTENT="Smoothed Aggregation">
<META NAME="keywords" CONTENT="userhtml">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">
<LINK REL="next" HREF="node14.html">
<LINK REL="previous" HREF="node12.html">
<LINK REL="up" HREF="node11.html">
<LINK REL="next" HREF="node14.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html241"
HREF="node14.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
<A NAME="tex2html237"
HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
<A NAME="tex2html231"
HREF="node12.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
<A NAME="tex2html239"
HREF="node2.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html242"
HREF="node14.html">Smoothers and coarsest-level solvers</A>
<B> Up:</B> <A NAME="tex2html238"
HREF="node11.html">Multigrid Background</A>
<B> Previous:</B> <A NAME="tex2html232"
HREF="node12.html">AMG preconditioners</A>
&nbsp; <B> <A NAME="tex2html240"
HREF="node2.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION00062000000000000000"></A><A NAME="sec:aggregation"></A>
<BR>
Smoothed Aggregation
</H2><FONT SIZE="+1"><FONT SIZE="+1"></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">In order to define the prolongator <IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$">, used to compute
the coarse-level matrix <IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img15.png"
ALT="$A^{k+1}$">, MLD2P4 uses the smoothed aggregation
algorithm described in [<A
HREF="node29.html#BREZINA_VANEK">2</A>,<A
HREF="node29.html#VANEK_MANDEL_BREZINA">25</A>].
The basic idea of this algorithm is to build a coarse set of indices
<IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img26.png"
ALT="$\Omega^{k+1}$"> by suitably grouping the indices of <IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"> into disjoint
subsets (aggregates), and to define the coarse-to-fine space transfer operator
<IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"> by applying a suitable smoother to a simple piecewise constant
prolongation operator, with the aim of improving the quality of the coarse-space correction.
</FONT></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">Three main steps can be identified in the smoothed aggregation procedure:
</FONT></FONT></FONT>
<OL>
<LI>aggregation of the indices of <IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"> to obtain <IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img26.png"
ALT="$\Omega^{k+1}$">;
</LI>
<LI>construction of the prolongator <IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$">;
</LI>
<LI>application of <IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"> and <IMG
WIDTH="95" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img17.png"
ALT="$R^k=(P^k)^T$"> to build <IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img15.png"
ALT="$A^{k+1}$">.
</LI>
</OL><FONT SIZE="+1"><FONT SIZE="+1"></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">In order to perform the coarsening step, the smoothed aggregation algorithm
described in&nbsp;[<A
HREF="node29.html#VANEK_MANDEL_BREZINA">25</A>] is used. In this algorithm,
each index <!-- MATH
$j \in \Omega^{k+1}$
-->
<IMG
WIDTH="72" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img27.png"
ALT="$j \in \Omega^{k+1}$"> corresponds to an aggregate <IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img28.png"
ALT="$\Omega^k_j$"> of <IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$">,
consisting of a suitably chosen index <!-- MATH
$i \in \Omega^k$
-->
<IMG
WIDTH="52" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img29.png"
ALT="$i \in \Omega^k$"> and indices that are (usually) contained in a
strongly-coupled neighborood of <IMG
WIDTH="11" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img30.png"
ALT="$i$">, i.e.,
</FONT></FONT></FONT>
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\Omega^k_j \subset \mathcal{N}_i^k(\theta) =
\left\{ r \in \Omega^k: |a_{ir}^k| > \theta \sqrt{|a_{ii}^ka_{rr}^k|} \right \} \cup \left\{ i \right\},
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:strongly_coup"></A><IMG
WIDTH="387" HEIGHT="72" BORDER="0"
SRC="img31.png"
ALT="\begin{displaymath}
\Omega^k_j \subset \mathcal{N}_i^k(\theta) =
\left\{ r ...
...vert a_{ii}^ka_{rr}^k\vert} \right \} \cup \left\{ i \right\},
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(3)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P><FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">
for a given threshold <!-- MATH
$\theta \in [0,1]$
-->
<IMG
WIDTH="69" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
SRC="img32.png"
ALT="$\theta \in [0,1]$"> (see&nbsp;[<A
HREF="node29.html#VANEK_MANDEL_BREZINA">25</A>] for the details).
Since this algorithm has a sequential nature, a decoupled
version of it is applied, where each processor independently executes
the algorithm on the set of indices assigned to it in the initial data
distribution. This version is embarrassingly parallel, since it does not require any data
communication. On the other hand, it may produce some nonuniform aggregates
and is strongly dependent on the number of processors and on the initial partitioning
of the matrix <IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img3.png"
ALT="$A$">. Nevertheless, this parallel algorithm has been chosen for
MLD2P4, since it has been shown to produce good results in practice
[<A
HREF="node29.html#aaecc_07">5</A>,<A
HREF="node29.html#apnum_07">7</A>,<A
HREF="node29.html#TUMINARO_TONG">24</A>].
</FONT></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">The prolongator <IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"> is built starting from a tentative prolongator
<!-- MATH
$\bar{P}^k \in \mathbb{R}^{n_k \times n_{k+1}}$
-->
<IMG
WIDTH="117" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img33.png"
ALT="$\bar{P}^k \in \mathbb{R}^{n_k \times n_{k+1}}$">, defined as
</FONT></FONT></FONT>
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\bar{P}^k =(\bar{p}_{ij}^k), \quad \bar{p}_{ij}^k =
\left\{ \begin{array}{ll}
1 & \quad \mbox{if} \; i \in \Omega^k_j, \\
0 & \quad \mbox{otherwise},
\end{array} \right.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:tent_prol"></A><IMG
WIDTH="287" HEIGHT="51" BORDER="0"
SRC="img34.png"
ALT="\begin{displaymath}
\bar{P}^k =(\bar{p}_{ij}^k), \quad \bar{p}_{ij}^k =
\left\{...
...ega^k_j, \
0 &amp; \quad \mbox{otherwise},
\end{array} \right.
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P><FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">
where <IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img28.png"
ALT="$\Omega^k_j$"> is the aggregate of <IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$">
corresponding to the index <!-- MATH
$j \in \Omega^{k+1}$
-->
<IMG
WIDTH="72" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img27.png"
ALT="$j \in \Omega^{k+1}$">.
<IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"> is obtained by applying to <IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img35.png"
ALT="$\bar{P}^k$"> a smoother
<!-- MATH
$S^k \in \mathbb{R}^{n_k \times n_k}$
-->
<IMG
WIDTH="101" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img36.png"
ALT="$S^k \in \mathbb{R}^{n_k \times n_k}$">:
</FONT></FONT></FONT>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
P^k = S^k \bar{P}^k,
\end{displaymath}
-->
<IMG
WIDTH="90" HEIGHT="30" BORDER="0"
SRC="img37.png"
ALT="\begin{displaymath}
P^k = S^k \bar{P}^k,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">
in order to remove nonsmooth components from the range of the prolongator,
and hence to improve the convergence properties of the multi-level
method&nbsp;[<A
HREF="node29.html#BREZINA_VANEK">2</A>,<A
HREF="node29.html#Stuben_01">23</A>].
A simple choice for <IMG
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img38.png"
ALT="$S^k$"> is the damped Jacobi smoother:
</FONT></FONT></FONT>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
S^k = I - \omega^k (D^k)^{-1} A^k_F ,
\end{displaymath}
-->
<IMG
WIDTH="175" HEIGHT="31" BORDER="0"
SRC="img39.png"
ALT="\begin{displaymath}
S^k = I - \omega^k (D^k)^{-1} A^k_F ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">
where <IMG
WIDTH="28" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img40.png"
ALT="$D^k$"> is the diagonal matrix with the same diagonal entries as <IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$A^k$">,
<!-- MATH
$A^k_F = (\bar{a}_{ij}^k)$
-->
<IMG
WIDTH="87" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img42.png"
ALT="$A^k_F = (\bar{a}_{ij}^k)$"> is the filtered matrix defined as
</FONT></FONT></FONT>
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\bar{a}_{ij}^k =
\left \{ \begin{array}{ll}
a_{ij}^k & \mbox{if } j \in \mathcal{N}_i^k(\theta), \\
0 & \mbox{otherwise},
\end{array} \right.
\; (j \ne i),
\qquad
\bar{a}_{ii}^k = a_{ii}^k - \sum_{j \ne i} (a_{ij}^k - \bar{a}_{ij}^k),
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:filtered"></A><IMG
WIDTH="514" HEIGHT="74" BORDER="0"
SRC="img43.png"
ALT="\begin{displaymath}
\bar{a}_{ij}^k =
\left \{ \begin{array}{ll}
a_{ij}^k &amp; ...
...ii}^k = a_{ii}^k - \sum_{j \ne i} (a_{ij}^k - \bar{a}_{ij}^k),
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(5)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P><FONT SIZE="+1"><FONT SIZE="+1"><FONT SIZE="+1">
and <IMG
WIDTH="24" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img44.png"
ALT="$\omega^k$"> is an approximation of <IMG
WIDTH="61" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img45.png"
ALT="$4/(3\rho^k)$">, where
<IMG
WIDTH="22" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img46.png"
ALT="$\rho^k$"> is the spectral radius of <!-- MATH
$(D^k)^{-1}A^k_F$
-->
<IMG
WIDTH="83" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img47.png"
ALT="$(D^k)^{-1}A^k_F$"> [<A
HREF="node29.html#BREZINA_VANEK">2</A>].
In MLD2P4 this approximation is obtained by using <!-- MATH
$\| A^k_F \|_\infty$
-->
<IMG
WIDTH="61" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img48.png"
ALT="$\Vert A^k_F \Vert _\infty$"> as an estimate
of <IMG
WIDTH="22" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img46.png"
ALT="$\rho^k$">. Note that for systems coming from uniformly elliptic
problems, filtering the matrix <IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$A^k$"> has little or no effect, and
<IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$A^k$"> can be used instead of <IMG
WIDTH="29" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img49.png"
ALT="$A^k_F$">. The latter choice is the default in MLD2P4.
</FONT></FONT></FONT>
<P>
<FONT SIZE="+1"><FONT SIZE="+1"></FONT></FONT><HR>
<!--Navigation Panel-->
<A NAME="tex2html241"
HREF="node14.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
<A NAME="tex2html237"
HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
<A NAME="tex2html231"
HREF="node12.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
<A NAME="tex2html239"
HREF="node2.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html242"
HREF="node14.html">Smoothers and coarsest-level solvers</A>
<B> Up:</B> <A NAME="tex2html238"
HREF="node11.html">Multigrid Background</A>
<B> Previous:</B> <A NAME="tex2html232"
HREF="node12.html">AMG preconditioners</A>
&nbsp; <B> <A NAME="tex2html240"
HREF="node2.html">Contents</A></B>
<!--End of Navigation Panel-->
</BODY>
</HTML>