You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/tests/pdegen/ppde2d.f90

486 lines
20 KiB
Fortran

!!!$
!!$
!!$ MLD2P4 version 2.0
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 3.3)
!!$
!!$ (C) Copyright 2008, 2010, 2012, 2015
!!$
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino Second University of Naples
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: ppde2d.f90
!
! Program: ppde2d
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs.
!
!
! The PDE is a general second order equation in 2d
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to a BLOCK
! data distribution.
!
module ppde2d_mod
contains
!
! functions parametrizing the differential equation
!
function b1(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y
b1=0.d0/sqrt(2.d0)
end function b1
function b2(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y
b2=0.d0/sqrt(2.d0)
end function b2
function c(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y
c=0.d0
end function c
function a1(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y
a1=1.d0!/80
end function a1
function a2(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y
a2=1.d0!/80
end function a2
function g(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = exp(-y**2)
end if
end function g
end module ppde2d_mod
program ppde2d
use psb_base_mod
use mld_prec_mod
use psb_krylov_mod
use psb_util_mod
use data_input
use ppde2d_mod
implicit none
! input parameters
character(len=20) :: kmethd, ptype
character(len=5) :: afmt
integer(psb_ipk_) :: idim
! miscellaneous
real(psb_dpk_), parameter :: one = 1.d0
real(psb_dpk_) :: t1, t2, tprec
! sparse matrix and preconditioner
type(psb_dspmat_type) :: a
type(mld_dprec_type) :: prec
! descriptor
type(psb_desc_type) :: desc_a
! dense vectors
type(psb_d_vect_type) :: x,b
! parallel environment
integer(psb_ipk_) :: ictxt, iam, np
! solver parameters
integer(psb_ipk_) :: iter, itmax,itrace, istopc, irst, nlv
integer(psb_long_int_k_) :: amatsize, precsize, descsize
real(psb_dpk_) :: err, eps
type precdata
character(len=20) :: descr ! verbose description of the prec
character(len=10) :: prec ! overall prectype
integer(psb_ipk_) :: novr ! number of overlap layers
integer(psb_ipk_) :: jsweeps ! Jacobi/smoother sweeps
character(len=16) :: restr ! restriction over application of as
character(len=16) :: prol ! prolongation over application of as
character(len=16) :: solve ! Solver type: ILU, SuperLU, UMFPACK.
integer(psb_ipk_) :: fill1 ! Fill-in for factorization 1
integer(psb_ipk_) :: svsweeps ! Solver sweeps for GS
real(psb_dpk_) :: thr1 ! Threshold for fact. 1 ILU(T)
character(len=16) :: smther ! Smoother
integer(psb_ipk_) :: nlevs ! Number of levels in multilevel prec.
integer(psb_ipk_) :: maxlevs ! Maximum number of levels in multilevel prec.
character(len=16) :: aggrkind ! smoothed/raw aggregatin
character(len=16) :: aggr_alg ! local or global aggregation
character(len=16) :: aggr_ord ! Ordering for aggregation
character(len=16) :: mltype ! additive or multiplicative 2nd level prec
character(len=16) :: smthpos ! side: pre, post, both smoothing
integer(psb_ipk_) :: csize ! aggregation size at which to stop.
character(len=16) :: cmat ! coarse mat
character(len=16) :: csolve ! Coarse solver: bjac, umf, slu, sludist
character(len=16) :: csbsolve ! Coarse subsolver: ILU, ILU(T), SuperLU, UMFPACK.
integer(psb_ipk_) :: cfill ! Fill-in for factorization 1
real(psb_dpk_) :: cthres ! Threshold for fact. 1 ILU(T)
integer(psb_ipk_) :: cjswp ! Jacobi sweeps
real(psb_dpk_) :: athres ! smoother aggregation threshold
real(psb_dpk_) :: mnaggratio ! Minimum aggregation ratio
end type precdata
type(precdata) :: prectype
type(psb_d_coo_sparse_mat) :: acoo
! other variables
integer(psb_ipk_) :: info, i
character(len=20) :: name,ch_err
info=psb_success_
call psb_init(ictxt)
call psb_info(ictxt,iam,np)
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ictxt)
stop
endif
if(psb_get_errstatus() /= 0) goto 9999
name='pde2d90'
call psb_set_errverbosity(itwo)
!
! Hello world
!
if (iam == psb_root_) then
write(*,*) 'Welcome to MLD2P4 version: ',mld_version_string_
write(*,*) 'This is the ',trim(name),' sample program'
end if
!
! get parameters
!
call get_parms(ictxt,kmethd,prectype,afmt,idim,istopc,itmax,itrace,irst,eps)
!
! allocate and fill in the coefficient matrix, rhs and initial guess
!
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_gen_pde2d(ictxt,idim,a,b,x,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info)
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_gen_pde2d'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (iam == psb_root_) &
& write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) &
& write(psb_out_unit,'(" ")')
!
! prepare the preconditioner.
!
if (psb_toupper(prectype%prec) == 'ML') then
call mld_precinit(prec,prectype%prec, info)
if (prectype%nlevs > 0) then
! Force number of levels, so disregard the other related arguments.
call mld_precset(prec,'n_prec_levs', prectype%nlevs, info)
else
if (prectype%csize>0)&
& call mld_precset(prec,'coarse_aggr_size', prectype%csize, info)
if (prectype%maxlevs>0)&
& call mld_precset(prec,'max_prec_levs', prectype%maxlevs, info)
if (prectype%mnaggratio>0)&
& call mld_precset(prec,'min_aggr_ratio', prectype%mnaggratio, info)
end if
if (prectype%athres >= dzero) &
& call mld_precset(prec,'aggr_thresh', prectype%athres, info)
call mld_precset(prec,'smoother_type', prectype%smther, info)
call mld_precset(prec,'smoother_sweeps', prectype%jsweeps, info)
call mld_precset(prec,'sub_ovr', prectype%novr, info)
call mld_precset(prec,'sub_restr', prectype%restr, info)
call mld_precset(prec,'sub_prol', prectype%prol, info)
call mld_precset(prec,'sub_solve', prectype%solve, info)
call mld_precset(prec,'sub_fillin', prectype%fill1, info)
call mld_precset(prec,'solver_sweeps', prectype%svsweeps, info)
call mld_precset(prec,'sub_iluthrs', prectype%thr1, info)
call mld_precset(prec,'aggr_kind', prectype%aggrkind,info)
call mld_precset(prec,'aggr_alg', prectype%aggr_alg,info)
call mld_precset(prec,'aggr_ord', prectype%aggr_ord,info)
call mld_precset(prec,'ml_type', prectype%mltype, info)
call mld_precset(prec,'smoother_pos', prectype%smthpos, info)
call mld_precset(prec,'coarse_solve', prectype%csolve, info)
call mld_precset(prec,'coarse_subsolve', prectype%csbsolve,info)
call mld_precset(prec,'coarse_mat', prectype%cmat, info)
call mld_precset(prec,'coarse_fillin', prectype%cfill, info)
call mld_precset(prec,'coarse_iluthrs', prectype%cthres, info)
call mld_precset(prec,'coarse_sweeps', prectype%cjswp, info)
else
nlv = 1
call mld_precinit(prec,prectype%prec, info)
call mld_precset(prec,'smoother_sweeps', prectype%jsweeps, info)
call mld_precset(prec,'sub_ovr', prectype%novr, info)
call mld_precset(prec,'sub_restr', prectype%restr, info)
call mld_precset(prec,'sub_prol', prectype%prol, info)
call mld_precset(prec,'sub_solve', prectype%solve, info)
call mld_precset(prec,'sub_fillin', prectype%fill1, info)
call mld_precset(prec,'solver_sweeps', prectype%svsweeps, info)
call mld_precset(prec,'sub_iluthrs', prectype%thr1, info)
end if
call psb_barrier(ictxt)
t1 = psb_wtime()
call mld_precbld(a,desc_a,prec,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_precbld'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tprec = psb_wtime()-t1
!!$ call prec%dump(info,prefix='test-ml',ac=.true.,solver=.true.,smoother=.true.)
call psb_amx(ictxt,tprec)
if (iam == psb_root_) &
& write(psb_out_unit,'("Preconditioner time : ",es12.5)')tprec
if (iam == psb_root_) call mld_precdescr(prec,info)
if (iam == psb_root_) &
& write(psb_out_unit,'(" ")')
!
! iterative method parameters
!
if(iam == psb_root_) &
& write(psb_out_unit,'("Calling iterative method ",a)')kmethd
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_krylov(kmethd,a,prec,b,x,eps,desc_a,info,&
& itmax=itmax,iter=iter,err=err,itrace=itrace,istop=istopc,irst=irst)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='solver routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
call psb_amx(ictxt,t2)
amatsize = a%sizeof()
descsize = desc_a%sizeof()
precsize = prec%sizeof()
call psb_sum(ictxt,amatsize)
call psb_sum(ictxt,descsize)
call psb_sum(ictxt,precsize)
if (iam == psb_root_) then
write(psb_out_unit,'(" ")')
write(psb_out_unit,'("Time to solve matrix : ",es12.5)') t2
write(psb_out_unit,'("Time per iteration : ",es12.5)') t2/iter
write(psb_out_unit,'("Number of iterations : ",i0)') iter
write(psb_out_unit,'("Convergence indicator on exit : ",es12.5)') err
write(psb_out_unit,'("Info on exit : ",i0)') info
write(psb_out_unit,'("Total memory occupation for A: ",i12)') amatsize
write(psb_out_unit,'("Total memory occupation for DESC_A: ",i12)') descsize
write(psb_out_unit,'("Total memory occupation for PREC: ",i12)') precsize
end if
!
! cleanup storage and exit
!
call psb_gefree(b,desc_a,info)
call psb_gefree(x,desc_a,info)
call psb_spfree(a,desc_a,info)
call mld_precfree(prec,info)
call psb_cdfree(desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='free routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_exit(ictxt)
stop
9999 continue
call psb_error(ictxt)
contains
!
! get iteration parameters from standard input
!
subroutine get_parms(ictxt,kmethd,prectype,afmt,idim,istopc,itmax,itrace,irst,eps)
integer(psb_ipk_) :: ictxt
type(precdata) :: prectype
character(len=*) :: kmethd, afmt
integer(psb_ipk_) :: idim, istopc,itmax,itrace,irst
integer(psb_ipk_) :: np, iam, info
real(psb_dpk_) :: eps
character(len=20) :: buffer
call psb_info(ictxt, iam, np)
if (iam == psb_root_) then
call read_data(kmethd,psb_inp_unit)
call read_data(afmt,psb_inp_unit)
call read_data(idim,psb_inp_unit)
call read_data(istopc,psb_inp_unit)
call read_data(itmax,psb_inp_unit)
call read_data(itrace,psb_inp_unit)
call read_data(irst,psb_inp_unit)
call read_data(eps,psb_inp_unit)
call read_data(prectype%descr,psb_inp_unit) ! verbose description of the prec
call read_data(prectype%prec,psb_inp_unit) ! overall prectype
call read_data(prectype%nlevs,psb_inp_unit) ! Prescribed number of levels
call read_data(prectype%csize,psb_inp_unit) ! coarse size
call read_data(prectype%mnaggratio,psb_inp_unit) ! Minimum aggregation ratio
call read_data(prectype%athres,psb_inp_unit) ! smoother aggr thresh
call read_data(prectype%maxlevs,psb_inp_unit) ! Maximum number of levels
call read_data(prectype%aggrkind,psb_inp_unit) ! smoothed/nonsmoothed/minenergy aggregatin
call read_data(prectype%aggr_alg,psb_inp_unit) ! decoupled or sym. decoupled aggregation
call read_data(prectype%aggr_ord,psb_inp_unit) ! aggregation ordering: natural, node degree
call read_data(prectype%mltype,psb_inp_unit) ! additive or multiplicative 2nd level prec
call read_data(prectype%smthpos,psb_inp_unit) ! side: pre, post, both smoothing
call read_data(prectype%jsweeps,psb_inp_unit) ! Smoother sweeps
call read_data(prectype%smther,psb_inp_unit) ! Smoother type.
call read_data(prectype%novr,psb_inp_unit) ! number of overlap layers
call read_data(prectype%restr,psb_inp_unit) ! restriction over application of as
call read_data(prectype%prol,psb_inp_unit) ! prolongation over application of as
call read_data(prectype%solve,psb_inp_unit) ! Subdomain solver: DSCALE ILU MILU ILUT FWGS BWGS MUMPS UMF SLU
call read_data(prectype%svsweeps,psb_inp_unit) ! Solver sweeps (GS)
call read_data(prectype%fill1,psb_inp_unit) ! Fill-in for factorization 1
call read_data(prectype%thr1,psb_inp_unit) ! Threshold for fact. 1 ILU(T)
call read_data(prectype%cmat,psb_inp_unit) ! coarse mat
call read_data(prectype%csolve,psb_inp_unit) ! Coarse solver: JACOBI BJAC UMF SLU SLUDIST MUMPS
call read_data(prectype%csbsolve,psb_inp_unit) ! subsolver: DSCALE GS BWGS ILU UMF SLU SLUDIST MUMPS
call read_data(prectype%cfill,psb_inp_unit) ! Fill-in for factorization 1
call read_data(prectype%cthres,psb_inp_unit) ! Threshold for fact. 1 ILU(T)
call read_data(prectype%cjswp,psb_inp_unit) ! Jacobi sweeps
end if
! broadcast parameters to all processors
call psb_bcast(ictxt,kmethd)
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,idim)
call psb_bcast(ictxt,istopc)
call psb_bcast(ictxt,itmax)
call psb_bcast(ictxt,itrace)
call psb_bcast(ictxt,irst)
call psb_bcast(ictxt,eps)
call psb_bcast(ictxt,prectype%descr) ! verbose description of the prec
call psb_bcast(ictxt,prectype%prec) ! overall prectype
call psb_bcast(ictxt,prectype%nlevs) ! Prescribed number of levels
call psb_bcast(ictxt,prectype%csize) ! coarse size
call psb_bcast(ictxt,prectype%mnaggratio) ! Minimum aggregation ratio
call psb_bcast(ictxt,prectype%athres) ! smoother aggr thresh
call psb_bcast(ictxt,prectype%maxlevs) ! Maximum number of levels
call psb_bcast(ictxt,prectype%aggrkind) ! smoothed/nonsmoothed/minenergy aggregatin
call psb_bcast(ictxt,prectype%aggr_alg) ! decoupled or sym. decoupled aggregation
call psb_bcast(ictxt,prectype%aggr_ord) ! aggregation ordering: natural, node degree
call psb_bcast(ictxt,prectype%mltype) ! additive or multiplicative 2nd level prec
call psb_bcast(ictxt,prectype%smthpos) ! side: pre, post, both smoothing
call psb_bcast(ictxt,prectype%jsweeps) ! Smoother sweeps
call psb_bcast(ictxt,prectype%smther) ! Smoother type.
call psb_bcast(ictxt,prectype%novr) ! number of overlap layers
call psb_bcast(ictxt,prectype%restr) ! restriction over application of as
call psb_bcast(ictxt,prectype%prol) ! prolongation over application of as
call psb_bcast(ictxt,prectype%solve) ! Subdomain solver: DSCALE ILU MILU ILUT FWGS BWGS MUMPS UMF SLU
call psb_bcast(ictxt,prectype%svsweeps) ! Solver sweeps (GS)
call psb_bcast(ictxt,prectype%fill1) ! Fill-in for factorization 1
call psb_bcast(ictxt,prectype%thr1) ! Threshold for fact. 1 ILU(T)
call psb_bcast(ictxt,prectype%cmat) ! coarse mat
call psb_bcast(ictxt,prectype%csolve) ! Coarse solver: JACOBI BJAC UMF SLU SLUDIST MUMPS
call psb_bcast(ictxt,prectype%csbsolve) ! subsolver: DSCALE GS BWGS ILU UMF SLU SLUDIST MUMPS
call psb_bcast(ictxt,prectype%cfill) ! Fill-in for factorization 1
call psb_bcast(ictxt,prectype%cthres) ! Threshold for fact. 1 ILU(T)
call psb_bcast(ictxt,prectype%cjswp) ! Jacobi sweeps
if (iam == psb_root_) then
write(psb_out_unit,'("Solving matrix : ell1")')
write(psb_out_unit,'("Grid dimensions : ",i4,"x",i4)')idim,idim
write(psb_out_unit,'("Number of processors : ",i0)') np
write(psb_out_unit,'("Data distribution : BLOCK")')
write(psb_out_unit,'("Preconditioner : ",a)') prectype%descr
write(psb_out_unit,'("Iterative method : ",a)') kmethd
write(psb_out_unit,'(" ")')
endif
return
end subroutine get_parms
!
! print an error message
!
subroutine pr_usage(iout)
integer(psb_ipk_) :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde90 methd prec dim &
&[istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab cgs rgmres bicgstabl'
write(iout,*)' prec : bjac diag none'
write(iout,*)' dim number of points along each axis'
write(iout,*)' the size of the resulting linear '
write(iout,*)' system is dim**3'
write(iout,*)' istop stopping criterion 1, 2 '
write(iout,*)' itmax maximum number of iterations [500] '
write(iout,*)' itrace <=0 (no tracing, default) or '
write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations '
end subroutine pr_usage
end program ppde2d