You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
642 lines
20 KiB
Fortran
642 lines
20 KiB
Fortran
!!$
|
|
!!$
|
|
!!$ MLD2P4 version 1.0
|
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
!!$ based on PSBLAS (Parallel Sparse BLAS version 2.2)
|
|
!!$
|
|
!!$ (C) Copyright 2008
|
|
!!$
|
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
|
!!$ Alfredo Buttari University of Rome Tor Vergata
|
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
|
!!$ Daniela di Serafino Second University of Naples
|
|
!!$
|
|
!!$ Redistribution and use in source and binary forms, with or without
|
|
!!$ modification, are permitted provided that the following conditions
|
|
!!$ are met:
|
|
!!$ 1. Redistributions of source code must retain the above copyright
|
|
!!$ notice, this list of conditions and the following disclaimer.
|
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
|
!!$ documentation and/or other materials provided with the distribution.
|
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
|
!!$ not be used to endorse or promote products derived from this
|
|
!!$ software without specific written permission.
|
|
!!$
|
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
|
!!$
|
|
!!$
|
|
! File: mld_dexample_ml.f90
|
|
!
|
|
! This sample program solves a linear system obtained by discretizing a
|
|
! PDE with Dirichlet BCs. The solver is BiCGStab coupled with one of the
|
|
! following multi-level preconditioner, as explained in Section 6.1 of
|
|
! the MLD2P4 User's and Reference Guide:
|
|
! - choice = 1, default multi-level Schwarz preconditioner (Sec. 6.1, Fig. 2)
|
|
! - choice = 2, hybrid three-level Schwarz preconditioner (Sec. 6.1, Fig. 3)
|
|
! - choice = 3, additive three-level Schwarz preconditioner (Sec. 6.1, Fig. 4)
|
|
!
|
|
! The PDE is a general second order equation in 3d
|
|
!
|
|
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
|
|
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0
|
|
! dxdx dydy dzdz dx dy dz
|
|
!
|
|
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
|
|
!
|
|
! Example taken from:
|
|
! C.T.Kelley
|
|
! Iterative Methods for Linear and Nonlinear Equations
|
|
! SIAM 1995
|
|
!
|
|
! In this sample program the index space of the discretized
|
|
! computational domain is first numbered sequentially in a standard way,
|
|
! then the corresponding vector is distributed according to a BLOCK
|
|
! data distribution.
|
|
!
|
|
! Boundary conditions are set in a very simple way, by adding
|
|
! equations of the form
|
|
!
|
|
! u(x,y) = exp(-x^2-y^2-z^2)
|
|
!
|
|
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
|
|
!
|
|
program mld_dexample_ml
|
|
use psb_base_mod
|
|
use mld_prec_mod
|
|
use psb_krylov_mod
|
|
use psb_util_mod
|
|
use data_input
|
|
|
|
implicit none
|
|
|
|
! input parameters
|
|
|
|
! sparse matrices
|
|
type(psb_dspmat_type) :: A
|
|
|
|
! sparse matrices descriptor
|
|
type(psb_desc_type):: desc_A
|
|
|
|
! preconditioner
|
|
type(mld_dprec_type) :: P
|
|
|
|
! right-hand side, solution and residual vectors
|
|
real(psb_dpk_), allocatable , save :: b(:), x(:), r(:)
|
|
|
|
! solver and preconditioner parameters
|
|
real(psb_dpk_) :: tol, err
|
|
integer :: itmax, iter, istop
|
|
integer :: nlev
|
|
|
|
! parallel environment parameters
|
|
integer :: ictxt, iam, np
|
|
|
|
! other variables
|
|
integer :: choice
|
|
integer :: i,info,j,amatsize,descsize,precsize
|
|
integer :: idim, ierr, ircode
|
|
real(psb_dpk_) :: t1, t2, tprec, resmx, resmxp
|
|
character(len=20) :: name
|
|
|
|
! initialize the parallel environment
|
|
|
|
call psb_init(ictxt)
|
|
call psb_info(ictxt,iam,np)
|
|
|
|
if (iam < 0) then
|
|
! This should not happen, but just in case
|
|
call psb_exit(ictxt)
|
|
stop
|
|
endif
|
|
|
|
name='mld_dexample_ml'
|
|
if(psb_get_errstatus() /= 0) goto 9999
|
|
info=0
|
|
call psb_set_errverbosity(2)
|
|
|
|
! get parameters
|
|
|
|
call get_parms(ictxt,choice,idim,itmax,tol)
|
|
|
|
! allocate and fill in the coefficient matrix, rhs and initial guess
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
call create_matrix(idim,A,b,x,desc_A,part_block,ictxt,info)
|
|
t2 = psb_wtime() - t1
|
|
if(info /= 0) then
|
|
info=4010
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_amx(ictxt,t2)
|
|
if (iam == psb_root_) write(*,'("Overall matrix creation time : ",es10.4)')t2
|
|
if (iam == psb_root_) write(*,'(" ")')
|
|
|
|
select case(choice)
|
|
|
|
case(1)
|
|
|
|
! initialize the default multi-level preconditioner, i.e. hybrid
|
|
! Schwarz, using RAS (with overlap 1 and ILU(0) on the blocks)
|
|
! as post-smoother and 4 block-Jacobi sweeps (with UMFPACK LU
|
|
! on the blocks) as distributed coarse-level solver
|
|
|
|
call mld_precinit(P,'ML',info)
|
|
|
|
case(2)
|
|
|
|
! set a three-level hybrid Schwarz preconditioner, which uses
|
|
! block Jacobi (with ILU(0) on the blocks) as post-smoother,
|
|
! a coarsest matrix replicated on the processors, and the
|
|
! LU factorization from UMFPACK as coarse-level solver
|
|
|
|
call mld_precinit(P,'ML',info,nlev=3)
|
|
call mld_precset(P,mld_smoother_type_,'BJAC',info)
|
|
call mld_precset(P,mld_coarse_mat_,'REPL',info)
|
|
call mld_precset(P,mld_coarse_solve_,'UMF',info)
|
|
|
|
case(3)
|
|
|
|
! set a three-level additive Schwarz preconditioner, which uses
|
|
! RAS (with overlap 1 and ILU(0) on the blocks) as pre- and
|
|
! post-smoother, and 5 block-Jacobi sweeps (with UMFPACK LU
|
|
! on the blocks) as distributed coarsest-level solver
|
|
|
|
call mld_precinit(P,'ML',info,nlev=3)
|
|
call mld_precset(P,mld_ml_type_,'ADD',info)
|
|
call mld_precset(P,mld_smoother_pos_,'TWOSIDE',info)
|
|
call mld_precset(P,mld_coarse_sweeps_,5,info)
|
|
|
|
end select
|
|
|
|
! build the preconditioner
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
|
|
call mld_precbld(A,desc_A,P,info)
|
|
|
|
tprec = psb_wtime()-t1
|
|
call psb_amx(ictxt, tprec)
|
|
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='psb_precbld')
|
|
goto 9999
|
|
end if
|
|
|
|
! set the solver parameters and the initial guess
|
|
|
|
call psb_geall(x,desc_A,info)
|
|
x(:) =0.0
|
|
call psb_geasb(x,desc_A,info)
|
|
|
|
! solve Ax=b with preconditioned BiCGSTAB
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
|
|
call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info,itmax,iter,err,itrace=1,istop=2)
|
|
|
|
t2 = psb_wtime() - t1
|
|
call psb_amx(ictxt,t2)
|
|
|
|
call psb_geall(r,desc_A,info)
|
|
r(:) =0.0
|
|
call psb_geasb(r,desc_A,info)
|
|
call psb_geaxpby(done,b,dzero,r,desc_A,info)
|
|
call psb_spmm(-done,A,x,done,r,desc_A,info)
|
|
call psb_genrm2s(resmx,r,desc_A,info)
|
|
call psb_geamaxs(resmxp,r,desc_A,info)
|
|
|
|
amatsize = psb_sizeof(A)
|
|
descsize = psb_sizeof(desc_A)
|
|
precsize = mld_sizeof(P)
|
|
call psb_sum(ictxt,amatsize)
|
|
call psb_sum(ictxt,descsize)
|
|
call psb_sum(ictxt,precsize)
|
|
|
|
call mld_precdescr(P,info)
|
|
|
|
if (iam==psb_root_) then
|
|
write(*,'(" ")')
|
|
write(*,'("Matrix from PDE example")')
|
|
write(*,'("Computed solution on ",i8," processors")')np
|
|
write(*,'("Iterations to convergence : ",i6)')iter
|
|
write(*,'("Error estimate on exit : ",es10.4)')err
|
|
write(*,'("Time to build prec. : ",es10.4)')tprec
|
|
write(*,'("Time to solve system : ",es10.4)')t2
|
|
write(*,'("Time per iteration : ",es10.4)')t2/(iter)
|
|
write(*,'("Total time : ",es10.4)')t2+tprec
|
|
write(*,'("Residual 2-norm : ",es10.4)')resmx
|
|
write(*,'("Residual inf-norm : ",es10.4)')resmxp
|
|
write(*,'("Total memory occupation for A : ",i10)')amatsize
|
|
write(*,'("Total memory occupation for DESC_A : ",i10)')descsize
|
|
write(*,'("Total memory occupation for PREC : ",i10)')precsize
|
|
end if
|
|
|
|
call psb_gefree(b, desc_A,info)
|
|
call psb_gefree(x, desc_A,info)
|
|
call psb_spfree(A, desc_A,info)
|
|
call mld_precfree(P,info)
|
|
call psb_cdfree(desc_A,info)
|
|
|
|
9999 continue
|
|
if(info /= 0) then
|
|
call psb_error(ictxt)
|
|
end if
|
|
call psb_exit(ictxt)
|
|
stop
|
|
|
|
contains
|
|
!
|
|
! get parameters from standard input
|
|
!
|
|
subroutine get_parms(ictxt,choice,idim,itmax,tol)
|
|
|
|
use psb_base_mod
|
|
implicit none
|
|
|
|
integer :: choice, idim, ictxt, itmax
|
|
real(psb_dpk_) :: tol
|
|
integer :: iam, np
|
|
|
|
call psb_info(ictxt,iam,np)
|
|
|
|
if (iam==psb_root_) then
|
|
! read input parameters
|
|
call read_data(choice,5)
|
|
call read_data(idim,5)
|
|
call read_data(itmax,5)
|
|
call read_data(tol,5)
|
|
end if
|
|
|
|
call psb_bcast(ictxt,choice)
|
|
call psb_bcast(ictxt,idim)
|
|
call psb_bcast(ictxt,itmax)
|
|
call psb_bcast(ictxt,tol)
|
|
|
|
end subroutine get_parms
|
|
|
|
!
|
|
! subroutine to allocate and fill in the coefficient matrix and
|
|
! the rhs
|
|
!
|
|
subroutine create_matrix(idim,a,b,xv,desc_a,parts,ictxt,info)
|
|
!
|
|
! Discretize the partial diferential equation
|
|
!
|
|
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
|
|
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0
|
|
! dxdx dydy dzdz dx dy dz
|
|
!
|
|
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
|
|
!
|
|
! Boundary conditions are set in a very simple way, by adding
|
|
! equations of the form
|
|
!
|
|
! u(x,y) = exp(-x^2-y^2-z^2)
|
|
!
|
|
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
|
|
!
|
|
use psb_base_mod
|
|
implicit none
|
|
integer :: idim
|
|
integer, parameter :: nbmax=10
|
|
real(psb_dpk_), allocatable :: b(:),xv(:)
|
|
type(psb_desc_type) :: desc_a
|
|
integer :: ictxt, info
|
|
interface
|
|
! .....user passed subroutine.....
|
|
subroutine parts(global_indx,n,np,pv,nv)
|
|
implicit none
|
|
integer, intent(in) :: global_indx, n, np
|
|
integer, intent(out) :: nv
|
|
integer, intent(out) :: pv(*)
|
|
end subroutine parts
|
|
end interface
|
|
! local variables
|
|
type(psb_dspmat_type) :: a
|
|
real(psb_dpk_) :: zt(nbmax),glob_x,glob_y,glob_z
|
|
integer :: m,n,nnz,glob_row,ipoints
|
|
integer :: x,y,z,ia,indx_owner
|
|
integer :: np, iam
|
|
integer :: element
|
|
integer :: nv, inv
|
|
integer, allocatable :: irow(:),icol(:)
|
|
real(psb_dpk_), allocatable :: val(:)
|
|
integer, allocatable :: prv(:)
|
|
! deltah dimension of each grid cell
|
|
! deltat discretization time
|
|
real(psb_dpk_) :: deltah
|
|
real(psb_dpk_),parameter :: rhs=0.d0,one=1.d0,zero=0.d0
|
|
real(psb_dpk_) :: t1, t2, t3, tins, tasb
|
|
real(psb_dpk_) :: a1, a2, a3, a4, b1, b2, b3
|
|
external :: a1, a2, a3, a4, b1, b2, b3
|
|
integer :: err_act
|
|
|
|
character(len=20) :: name
|
|
|
|
info = 0
|
|
name = 'create_matrix'
|
|
call psb_erractionsave(err_act)
|
|
|
|
call psb_info(ictxt, iam, np)
|
|
|
|
deltah = 1.d0/(idim-1)
|
|
|
|
! initialize array descriptor and sparse matrix storage; provide an
|
|
! estimate of the number of non zeroes
|
|
|
|
ipoints=idim-2
|
|
m = ipoints*ipoints*ipoints
|
|
n = m
|
|
nnz = ((n*9)/(np))
|
|
if(iam == psb_root_) write(0,'("Generating Matrix (size=",i0x,")...")')n
|
|
|
|
call psb_cdall(ictxt,desc_a,info,mg=n,parts=parts)
|
|
call psb_spall(a,desc_a,info,nnz=nnz)
|
|
! define rhs from boundary conditions; also build initial guess
|
|
call psb_geall(b,desc_a,info)
|
|
call psb_geall(xv,desc_a,info)
|
|
if(info /= 0) then
|
|
info=4010
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
! we build an auxiliary matrix consisting of one row at a
|
|
! time; just a small matrix. might be extended to generate
|
|
! a bunch of rows per call.
|
|
!
|
|
allocate(val(20*nbmax),irow(20*nbmax),&
|
|
&icol(20*nbmax),prv(np),stat=info)
|
|
if (info /= 0 ) then
|
|
info=4000
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
endif
|
|
|
|
tins = 0.d0
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
|
|
! loop over rows belonging to current process in a block
|
|
! distribution.
|
|
|
|
do glob_row = 1, n
|
|
call parts(glob_row,n,np,prv,nv)
|
|
do inv = 1, nv
|
|
indx_owner = prv(inv)
|
|
if (indx_owner == iam) then
|
|
! local matrix pointer
|
|
element=1
|
|
! compute gridpoint coordinates
|
|
if (mod(glob_row,ipoints*ipoints) == 0) then
|
|
x = glob_row/(ipoints*ipoints)
|
|
else
|
|
x = glob_row/(ipoints*ipoints)+1
|
|
endif
|
|
if (mod((glob_row-(x-1)*ipoints*ipoints),ipoints) == 0) then
|
|
y = (glob_row-(x-1)*ipoints*ipoints)/ipoints
|
|
else
|
|
y = (glob_row-(x-1)*ipoints*ipoints)/ipoints+1
|
|
endif
|
|
z = glob_row-(x-1)*ipoints*ipoints-(y-1)*ipoints
|
|
! glob_x, glob_y, glob_x coordinates
|
|
glob_x=x*deltah
|
|
glob_y=y*deltah
|
|
glob_z=z*deltah
|
|
|
|
! check on boundary points
|
|
zt(1) = 0.d0
|
|
! internal point: build discretization
|
|
!
|
|
! term depending on (x-1,y,z)
|
|
!
|
|
if (x==1) then
|
|
val(element)=-b1(glob_x,glob_y,glob_z)&
|
|
& -a1(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
zt(1) = exp(-glob_y**2-glob_z**2)*(-val(element))
|
|
else
|
|
val(element)=-b1(glob_x,glob_y,glob_z)&
|
|
& -a1(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
icol(element)=(x-2)*ipoints*ipoints+(y-1)*ipoints+(z)
|
|
element=element+1
|
|
endif
|
|
! term depending on (x,y-1,z)
|
|
if (y==1) then
|
|
val(element)=-b2(glob_x,glob_y,glob_z)&
|
|
& -a2(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
zt(1) = exp(-glob_x**2-glob_z**2)*(-val(element))
|
|
else
|
|
val(element)=-b2(glob_x,glob_y,glob_z)&
|
|
& -a2(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
icol(element)=(x-1)*ipoints*ipoints+(y-2)*ipoints+(z)
|
|
element=element+1
|
|
endif
|
|
! term depending on (x,y,z-1)
|
|
if (z==1) then
|
|
val(element)=-b3(glob_x,glob_y,glob_z)&
|
|
& -a3(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
zt(1) = exp(-glob_x**2-glob_y**2)*(-val(element))
|
|
else
|
|
val(element)=-b3(glob_x,glob_y,glob_z)&
|
|
& -a3(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
icol(element)=(x-1)*ipoints*ipoints+(y-1)*ipoints+(z-1)
|
|
element=element+1
|
|
endif
|
|
! term depending on (x,y,z)
|
|
val(element)=2*b1(glob_x,glob_y,glob_z)&
|
|
& +2*b2(glob_x,glob_y,glob_z)&
|
|
& +2*b3(glob_x,glob_y,glob_z)&
|
|
& +a1(glob_x,glob_y,glob_z)&
|
|
& +a2(glob_x,glob_y,glob_z)&
|
|
& +a3(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
icol(element)=(x-1)*ipoints*ipoints+(y-1)*ipoints+(z)
|
|
element=element+1
|
|
! term depending on (x,y,z+1)
|
|
if (z==ipoints) then
|
|
val(element)=-b1(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
zt(1) = exp(-glob_x**2-glob_y**2)*exp(-glob_z)*(-val(element))
|
|
else
|
|
val(element)=-b1(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
icol(element)=(x-1)*ipoints*ipoints+(y-1)*ipoints+(z+1)
|
|
element=element+1
|
|
endif
|
|
! term depending on (x,y+1,z)
|
|
if (y==ipoints) then
|
|
val(element)=-b2(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
zt(1) = exp(-glob_x**2-glob_z**2)*exp(-glob_y)*(-val(element))
|
|
else
|
|
val(element)=-b2(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
icol(element)=(x-1)*ipoints*ipoints+(y)*ipoints+(z)
|
|
element=element+1
|
|
endif
|
|
! term depending on (x+1,y,z)
|
|
if (x==ipoints) then
|
|
val(element)=-b3(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
|
|
else
|
|
val(element)=-b3(glob_x,glob_y,glob_z)
|
|
val(element) = val(element)/(deltah*&
|
|
& deltah)
|
|
icol(element)=(x)*ipoints*ipoints+(y-1)*ipoints+(z)
|
|
element=element+1
|
|
endif
|
|
irow(1:element-1)=glob_row
|
|
ia=glob_row
|
|
|
|
t3 = psb_wtime()
|
|
call psb_spins(element-1,irow,icol,val,a,desc_a,info)
|
|
if(info /= 0) exit
|
|
tins = tins + (psb_wtime()-t3)
|
|
call psb_geins(1,(/ia/),zt(1:1),b,desc_a,info)
|
|
if(info /= 0) exit
|
|
zt(1)=0.d0
|
|
call psb_geins(1,(/ia/),zt(1:1),xv,desc_a,info)
|
|
if(info /= 0) exit
|
|
end if
|
|
end do
|
|
end do
|
|
|
|
call psb_barrier(ictxt)
|
|
t2 = psb_wtime()-t1
|
|
|
|
if(info /= 0) then
|
|
info=4010
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
deallocate(val,irow,icol)
|
|
|
|
t1 = psb_wtime()
|
|
call psb_cdasb(desc_a,info)
|
|
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_)
|
|
call psb_barrier(ictxt)
|
|
tasb = psb_wtime()-t1
|
|
if(info /= 0) then
|
|
info=4010
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_amx(ictxt,t2)
|
|
call psb_amx(ictxt,tins)
|
|
call psb_amx(ictxt,tasb)
|
|
|
|
if(iam == psb_root_) then
|
|
write(*,'("The matrix has been generated and assembeld in ",a3," format.")')&
|
|
& a%fida(1:3)
|
|
write(*,'("-pspins time : ",es10.4)')tins
|
|
write(*,'("-insert time : ",es10.4)')t2
|
|
write(*,'("-assembly time : ",es10.4)')tasb
|
|
end if
|
|
|
|
call psb_geasb(b,desc_a,info)
|
|
call psb_geasb(xv,desc_a,info)
|
|
if(info /= 0) then
|
|
info=4010
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_erractionrestore(err_act)
|
|
return
|
|
|
|
9999 continue
|
|
call psb_erractionrestore(err_act)
|
|
if (err_act == psb_act_abort_) then
|
|
call psb_error(ictxt)
|
|
return
|
|
end if
|
|
return
|
|
end subroutine create_matrix
|
|
end program mld_dexample_ml
|
|
!
|
|
! functions parametrizing the differential equation
|
|
!
|
|
function a1(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: a1
|
|
real(psb_dpk_) :: x,y,z
|
|
! a1=1.d0
|
|
a1=0.d0
|
|
end function a1
|
|
function a2(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: a2
|
|
real(psb_dpk_) :: x,y,z
|
|
! a2=2.d1*y
|
|
a2=0.d0
|
|
end function a2
|
|
function a3(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: a3
|
|
real(psb_dpk_) :: x,y,z
|
|
! a3=1.d0
|
|
a3=0.d0
|
|
end function a3
|
|
function a4(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: a4
|
|
real(psb_dpk_) :: x,y,z
|
|
! a4=1.d0
|
|
a4=0.d0
|
|
end function a4
|
|
function b1(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: b1
|
|
real(psb_dpk_) :: x,y,z
|
|
b1=1.d0
|
|
end function b1
|
|
function b2(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: b2
|
|
real(psb_dpk_) :: x,y,z
|
|
b2=1.d0
|
|
end function b2
|
|
function b3(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: b3
|
|
real(psb_dpk_) :: x,y,z
|
|
b3=1.d0
|
|
end function b3
|