amg4psblas/mlprec/impl/mld_caggrmat_nosmth_asb.f90

178 lines
7.0 KiB
Fortran

!
!
! MLD2P4 version 2.1
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008, 2010, 2012, 2015, 2017
!
! Salvatore Filippone Cranfield University, UK
! Ambra Abdullahi Hassan University of Rome Tor Vergata, IT
! Alfredo Buttari CNRS-IRIT, Toulouse, FR
! Pasqua D'Ambra IAC-CNR, Naples, IT
! Daniela di Serafino University of Campania "L. Vanvitelli", Caserta, IT
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_caggrmat_nosmth_asb.F90
!
! Subroutine: mld_caggrmat_nosmth_asb
! Version: complex
!
! This routine builds a coarse-level matrix A_C from a fine-level matrix A
! by using the Galerkin approach, i.e.
!
! A_C = P_C^T A P_C,
!
! where P_C is the piecewise constant interpolation operator corresponding
! the fine-to-coarse level mapping built by mld_aggrmap_bld.
!
! The coarse-level matrix A_C is distributed among the parallel processes or
! replicated on each of them, according to the value of p%parms%coarse_mat
! specified by the user through mld_cprecinit and mld_zprecset.
! On output from this routine the entries of AC, op_prol, op_restr
! are still in "global numbering" mode; this is fixed in the calling routine
! mld_c_lev_aggrmat_asb.
!
! For details see
! P. D'Ambra, D. di Serafino and S. Filippone, On the development of
! PSBLAS-based parallel two-level Schwarz preconditioners, Appl. Num. Math.,
! 57 (2007), 1181-1196.
!
!
! Arguments:
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the local part of
! the fine-level matrix.
! desc_a - type(psb_desc_type), input.
! The communication descriptor of the fine-level matrix.
! p - type(mld_c_onelev_type), input/output.
! The 'one-level' data structure that will contain the local
! part of the matrix to be built as well as the information
! concerning the prolongator and its transpose.
! parms - type(mld_sml_parms), input
! Parameters controlling the choice of algorithm
! ac - type(psb_cspmat_type), output
! The coarse matrix on output
!
! ilaggr - integer, dimension(:), input
! The mapping between the row indices of the coarse-level
! matrix and the row indices of the fine-level matrix.
! ilaggr(i)=j means that node i in the adjacency graph
! of the fine-level matrix is mapped onto node j in the
! adjacency graph of the coarse-level matrix. Note that the indices
! are assumed to be shifted so as to make sure the ranges on
! the various processes do not overlap.
! nlaggr - integer, dimension(:) input
! nlaggr(i) contains the aggregates held by process i.
! op_prol - type(psb_cspmat_type), input/output
! The tentative prolongator on input, the computed prolongator on output
!
! op_restr - type(psb_cspmat_type), output
! The restrictor operator; normally, it is the transpose of the prolongator.
!
! info - integer, output.
! Error code.
!
!
subroutine mld_caggrmat_nosmth_asb(a,desc_a,ilaggr,nlaggr,parms,ac,op_prol,op_restr,info)
use psb_base_mod
use mld_base_prec_type
use mld_c_inner_mod, mld_protect_name => mld_caggrmat_nosmth_asb
implicit none
! Arguments
type(psb_cspmat_type), intent(in) :: a
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(inout) :: ilaggr(:), nlaggr(:)
type(mld_sml_parms), intent(inout) :: parms
type(psb_cspmat_type), intent(inout) :: op_prol
type(psb_cspmat_type), intent(out) :: ac,op_restr
integer(psb_ipk_), intent(out) :: info
! Local variables
integer(psb_ipk_) :: err_act
integer(psb_ipk_) :: ictxt,np,me, icomm, ndx, minfo
character(len=20) :: name
integer(psb_ipk_) :: ierr(5)
type(psb_c_coo_sparse_mat) :: ac_coo, acoo
type(psb_c_csr_sparse_mat) :: acsr1, acsr2
integer(psb_ipk_) :: debug_level, debug_unit
integer(psb_ipk_) :: nrow, nglob, ncol, ntaggr, nzl, ip, &
& naggr, nzt, naggrm1, i, k
name='mld_aggrmat_nosmth_asb'
if(psb_get_errstatus().ne.0) return
info=psb_success_
call psb_erractionsave(err_act)
ictxt = desc_a%get_context()
icomm = desc_a%get_mpic()
call psb_info(ictxt, me, np)
nglob = desc_a%get_global_rows()
nrow = desc_a%get_local_rows()
ncol = desc_a%get_local_cols()
naggr = nlaggr(me+1)
ntaggr = sum(nlaggr)
naggrm1=sum(nlaggr(1:me))
call acoo%allocate(ncol,ntaggr,ncol)
call op_prol%cscnv(info,type='csr',dupl=psb_dupl_add_)
if (info /= psb_success_) goto 9999
call op_prol%transp(op_restr)
call a%cp_to(ac_coo)
nzt = ac_coo%get_nzeros()
k = 0
do i=1, nzt
k = k + 1
ac_coo%ia(k) = ilaggr(ac_coo%ia(i))
ac_coo%ja(k) = ilaggr(ac_coo%ja(i))
ac_coo%val(k) = ac_coo%val(i)
enddo
call ac_coo%set_nrows(naggr)
call ac_coo%set_ncols(naggr)
call ac_coo%set_nzeros(k)
call ac_coo%set_dupl(psb_dupl_add_)
call ac_coo%fix(info)
call ac%mv_from(ac_coo)
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_caggrmat_nosmth_asb