You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/docs/html/userhtmlsu8.html

2587 lines
142 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html >
<head><title>Method set</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="generator" content="TeX4ht (http://www.tug.org/tex4ht/)">
<meta name="originator" content="TeX4ht (http://www.tug.org/tex4ht/)">
<!-- html,3 -->
<meta name="src" content="userhtml.tex">
<link rel="stylesheet" type="text/css" href="userhtml.css">
</head><body
>
<!--l. 72--><div class="crosslinks"><p class="noindent"><span
class="cmr-12">[</span><a
href="userhtmlsu9.html" ><span
class="cmr-12">next</span></a><span
class="cmr-12">] [</span><a
href="userhtmlsu7.html" ><span
class="cmr-12">prev</span></a><span
class="cmr-12">] [</span><a
href="userhtmlsu7.html#tailuserhtmlsu7.html" ><span
class="cmr-12">prev-tail</span></a><span
class="cmr-12">] [</span><a
href="#tailuserhtmlsu8.html"><span
class="cmr-12">tail</span></a><span
class="cmr-12">] [</span><a
href="userhtmlse5.html#userhtmlsu8.html" ><span
class="cmr-12">up</span></a><span
class="cmr-12">] </span></p></div>
<h4 class="subsectionHead"><span class="titlemark"><span
class="cmr-12">5.2 </span></span> <a
id="x18-170005.2"></a><span
class="cmr-12">Method set</span></h4>
<div class="center"
>
<!--l. 74--><p class="noindent" >
<!--l. 75--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">call</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">p</span><span
class="cmtt-12">%</span><span
class="cmtt-12">set</span><span
class="cmtt-12">(</span><span
class="cmtt-12">what</span><span
class="cmtt-12">,</span><span
class="cmtt-12">val</span><span
class="cmtt-12">,</span><span
class="cmtt-12">info</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">[,</span><span
class="cmtt-12">ilev</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">ilmax</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">pos</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">idx</span><span
class="cmtt-12">])</span></div>
<!--l. 78--><p class="noindent" ><span
class="cmr-12">This method sets the parameters defining the preconditioner </span><span class="lstinline"></span><span
class="cmtt-12">p</span><span
class="cmr-12">. More precisely, the</span>
<span
class="cmr-12">parameter identified by </span><span class="lstinline"></span><span
class="cmtt-12">what</span> <span
class="cmr-12">is assigned the value contained in </span><span class="lstinline"></span><span
class="cmtt-12">val</span><span
class="cmr-12">.</span>
<!--l. 83--><p class="noindent" ><span
class="cmbx-12">Arguments</span>
<div class="tabular"> <table id="TBL-3" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-3-1g"><col
id="TBL-3-1"><col
id="TBL-3-2"></colgroup><tr
style="vertical-align:baseline;" id="TBL-3-1-"><td style="white-space:wrap; text-align:left;" id="TBL-3-1-1"
class="td11"><!--l. 86--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">what</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-3-1-2"
class="td11"><!--l. 86--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">character</span><span
class="cmtt-12">(</span><span
class="cmtt-12">len</span><span
class="cmtt-12">=*)</span><span
class="cmr-12">.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-2-"><td style="white-space:wrap; text-align:left;" id="TBL-3-2-1"
class="td11"><!--l. 87--><p class="noindent" > </td><td style="white-space:wrap; text-align:left;" id="TBL-3-2-2"
class="td11"><!--l. 87--><p class="noindent" ><span
class="cmr-12">The parameter to be set. It can be specified through its name; the</span>
<span
class="cmr-12">string is case-insensitive. See Tables</span><span
class="cmr-12">&#x00A0;</span><a
href="#x18-17009r2"><span
class="cmr-12">2</span><!--tex4ht:ref: tab:p_cycle --></a><span
class="cmr-12">-</span><a
href="#x18-17015r8"><span
class="cmr-12">8</span><!--tex4ht:ref: tab:p_smoother_1 --></a><span
class="cmr-12">.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-3-"><td style="white-space:wrap; text-align:left;" id="TBL-3-3-1"
class="td11"><!--l. 90--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">val</span><span
class="cmtt-12">&#x00A0;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-3-3-2"
class="td11"><!--l. 90--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">integer</span> <span
class="cmti-12">or </span><span class="lstinline"></span><span
class="cmtt-12">character</span><span
class="cmtt-12">(</span><span
class="cmtt-12">len</span><span
class="cmtt-12">=*)</span> <span
class="cmti-12">or </span><span class="lstinline"></span><span
class="cmtt-12">real</span><span
class="cmtt-12">(</span><span
class="cmtt-12">psb_spk_</span><span
class="cmtt-12">)</span> <span
class="cmti-12">or</span>
<span class="lstinline"></span><span
class="cmtt-12">real</span><span
class="cmtt-12">(</span><span
class="cmtt-12">psb_dpk_</span><span
class="cmtt-12">)</span><span
class="cmr-12">, </span><span class="lstinline"></span><span
class="cmtt-12">intent</span><span
class="cmtt-12">(</span><span
class="cmtt-12">in</span><span
class="cmtt-12">)</span><span
class="cmr-12">.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-4-"><td style="white-space:wrap; text-align:left;" id="TBL-3-4-1"
class="td11"><!--l. 93--><p class="noindent" > </td><td style="white-space:wrap; text-align:left;" id="TBL-3-4-2"
class="td11"><!--l. 93--><p class="noindent" ><span
class="cmr-12">The value of the parameter to be set. The list of allowed values and</span>
<span
class="cmr-12">the corresponding data types is given in Tables</span><span
class="cmr-12">&#x00A0;</span><a
href="#x18-17009r2"><span
class="cmr-12">2</span><!--tex4ht:ref: tab:p_cycle --></a><span
class="cmr-12">-</span><a
href="#x18-17015r8"><span
class="cmr-12">8</span><!--tex4ht:ref: tab:p_smoother_1 --></a><span
class="cmr-12">. When the value</span>
<span
class="cmr-12">is of type </span><span class="lstinline"></span><span
class="cmtt-12">character</span><span
class="cmtt-12">(</span><span
class="cmtt-12">len</span><span
class="cmtt-12">=*)</span><span
class="cmr-12">, it is also treated as case insensitive.</span></td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-5-"><td style="white-space:wrap; text-align:left;" id="TBL-3-5-1"
class="td11"><!--l. 98--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">info</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-3-5-2"
class="td11"><!--l. 98--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">integer</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">intent</span><span
class="cmtt-12">(</span><span
class="cmtt-12">out</span><span
class="cmtt-12">)</span><span
class="cmr-12">.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-6-"><td style="white-space:wrap; text-align:left;" id="TBL-3-6-1"
class="td11"><!--l. 99--><p class="noindent" > </td><td style="white-space:wrap; text-align:left;" id="TBL-3-6-2"
class="td11"><!--l. 99--><p class="noindent" ><span
class="cmr-12">Error code. If no error, 0 is returned. See Section</span><span
class="cmr-12">&#x00A0;</span><a
href="userhtmlse7.html#x27-310007"><span
class="cmr-12">7</span><!--tex4ht:ref: sec:errors --></a> <span
class="cmr-12">for details.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-7-"><td style="white-space:wrap; text-align:left;" id="TBL-3-7-1"
class="td11"><!--l. 101--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">ilev</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-3-7-2"
class="td11"><!--l. 101--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">integer</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">optional</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">intent</span><span
class="cmtt-12">(</span><span
class="cmtt-12">in</span><span
class="cmtt-12">)</span><span
class="cmr-12">.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-8-"><td style="white-space:wrap; text-align:left;" id="TBL-3-8-1"
class="td11"><!--l. 102--><p class="noindent" > </td><td style="white-space:wrap; text-align:left;" id="TBL-3-8-2"
class="td11"><!--l. 102--><p class="noindent" ><span
class="cmr-12">For the multilevel preconditioner, the level at which the</span>
<span
class="cmr-12">preconditioner parameter has to be set. The levels are numbered</span>
<span
class="cmr-12">in increasing order starting from the finest one, i.e., level 1 is the</span>
<span
class="cmr-12">finest level. If </span><span class="lstinline"></span><span
class="cmtt-12">ilev</span> <span
class="cmr-12">is not present, the parameter identified by </span><span class="lstinline"></span><span
class="cmtt-12">what</span>
<span
class="cmr-12">is set at all levels that are appropriate (see Tables</span><span
class="cmr-12">&#x00A0;</span><a
href="#x18-17009r2"><span
class="cmr-12">2</span><!--tex4ht:ref: tab:p_cycle --></a><span
class="cmr-12">-</span><a
href="#x18-17015r8"><span
class="cmr-12">8</span><!--tex4ht:ref: tab:p_smoother_1 --></a><span
class="cmr-12">).</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-9-"><td style="white-space:wrap; text-align:left;" id="TBL-3-9-1"
class="td11"><!--l. 109--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">ilmax</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-3-9-2"
class="td11"><!--l. 109--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">integer</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">optional</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">intent</span><span
class="cmtt-12">(</span><span
class="cmtt-12">in</span><span
class="cmtt-12">)</span><span
class="cmr-12">.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-10-"><td style="white-space:wrap; text-align:left;" id="TBL-3-10-1"
class="td11"><!--l. 110--><p class="noindent" > </td><td style="white-space:wrap; text-align:left;" id="TBL-3-10-2"
class="td11"><!--l. 110--><p class="noindent" ><span
class="cmr-12">For the multilevel preconditioner, when both </span><span class="lstinline"></span><span
class="cmtt-12">ilev</span> <span
class="cmr-12">and </span><span class="lstinline"></span><span
class="cmtt-12">ilmax</span> <span
class="cmr-12">are</span>
<span
class="cmr-12">present, the settings are applied at all levels </span><span class="lstinline"></span><span
class="cmtt-12">ilev</span><span
class="cmtt-12">:</span><span
class="cmtt-12">ilmax</span><span
class="cmr-12">. When</span>
<span class="lstinline"></span><span
class="cmtt-12">ilev</span> <span
class="cmr-12">is present but </span><span class="lstinline"></span><span
class="cmtt-12">ilmax</span> <span
class="cmr-12">is not, then the default is </span><span class="lstinline"></span><span
class="cmtt-12">ilmax</span><span
class="cmtt-12">=</span><span
class="cmtt-12">ilev</span><span
class="cmr-12">.</span>
<span
class="cmr-12">The levels are numbered in increasing order starting from the finest</span>
<span
class="cmr-12">one, i.e., level 1 is the finest level.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-11-"><td style="white-space:wrap; text-align:left;" id="TBL-3-11-1"
class="td11"><!--l. 117--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">pos</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-3-11-2"
class="td11"><!--l. 117--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">character</span><span
class="cmtt-12">(</span><span
class="cmtt-12">len</span><span
class="cmtt-12">=*),</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">optional</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">intent</span><span
class="cmtt-12">(</span><span
class="cmtt-12">in</span><span
class="cmtt-12">)</span><span
class="cmr-12">.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-12-"><td style="white-space:wrap; text-align:left;" id="TBL-3-12-1"
class="td11"><!--l. 118--><p class="noindent" > </td><td style="white-space:wrap; text-align:left;" id="TBL-3-12-2"
class="td11"><!--l. 118--><p class="noindent" ><span
class="cmr-12">Whether the other arguments apply only to the pre-smoother</span>
<span
class="cmr-12">(</span><span class="lstinline"></span><span
class="cmtt-12">&#8217;</span><span
class="cmtt-12">PRE</span><span
class="cmtt-12">&#8217;</span><span
class="cmr-12">) or to the post-smoother (</span><span class="lstinline"></span><span
class="cmtt-12">&#8217;</span><span
class="cmtt-12">POST</span><span
class="cmtt-12">&#8217;</span><span
class="cmr-12">). If </span><span class="lstinline"></span><span
class="cmtt-12">pos</span> <span
class="cmr-12">is not present,</span>
<span
class="cmr-12">the other arguments are applied to both smoothers. If the</span>
<span
class="cmr-12">preconditioner is one-level or the parameter identified by </span><span class="lstinline"></span><span
class="cmtt-12">what</span> <span
class="cmr-12">does</span>
<span
class="cmr-12">not concern the smoothers, </span><span class="lstinline"></span><span
class="cmtt-12">pos</span> <span
class="cmr-12">is ignored.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-13-"><td style="white-space:wrap; text-align:left;" id="TBL-3-13-1"
class="td11"><!--l. 123--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">idx</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-3-13-2"
class="td11"><!--l. 123--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-12">integer</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">optional</span><span
class="cmtt-12">,</span><span
class="cmtt-12">&#x00A0;</span><span
class="cmtt-12">intent</span><span
class="cmtt-12">(</span><span
class="cmtt-12">in</span><span
class="cmtt-12">)</span><span
class="cmr-12">.</span> </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-3-14-"><td style="white-space:wrap; text-align:left;" id="TBL-3-14-1"
class="td11"><!--l. 124--><p class="noindent" > </td><td style="white-space:wrap; text-align:left;" id="TBL-3-14-2"
class="td11"><!--l. 124--><p class="noindent" ><span
class="cmr-12">An auxiliary input argument that can be passed to the underlying</span>
<span
class="cmr-12">objects.</span> </td>
</tr></table></div>
<!--l. 129--><p class="noindent" >
<!--l. 134--><p class="indent" > <span
class="cmr-12">A variety of preconditioners can be obtained by setting the appropriate</span>
<span
class="cmr-12">preconditioner parameters. These parameters can be logically divided into four groups,</span>
<span
class="cmr-12">i.e., parameters defining</span>
<ol class="enumerate1" >
<li
class="enumerate" id="x18-17002x1"><span
class="cmr-12">the type of multilevel cycle and how many cycles must be applied;</span>
</li>
<li
class="enumerate" id="x18-17004x2"><span
class="cmr-12">the coarsening algorithm;</span>
</li>
<li
class="enumerate" id="x18-17006x3"><span
class="cmr-12">the solver at the coarsest level (for multilevel preconditioners only);</span>
</li>
<li
class="enumerate" id="x18-17008x4"><span
class="cmr-12">the smoother of the multilevel preconditioners, or the one-level</span>
<span
class="cmr-12">preconditioner.</span></li></ol>
<!--l. 145--><p class="noindent" ><span
class="cmr-12">A list of the parameters that can be set, along with their allowed and default values, is</span>
<span
class="cmr-12">given in Tables</span><span
class="cmr-12">&#x00A0;</span><a
href="#x18-17009r2"><span
class="cmr-12">2</span><!--tex4ht:ref: tab:p_cycle --></a><span
class="cmr-12">-</span><a
href="#x18-17015r8"><span
class="cmr-12">8</span><!--tex4ht:ref: tab:p_smoother_1 --></a><span
class="cmr-12">.</span><br
class="newline" />
<!--l. 148--><p class="indent" > <span
class="cmbx-12">Remark 2. </span><span
class="cmr-12">A smoother is usually obtained by combining two objects: a</span>
<span
class="cmr-12">smoother (</span><span class="lstinline"></span><span
class="cmtt-12">&#8217;</span><span
class="cmtt-12">SMOOTHER_TYPE</span><span
class="cmtt-12">&#8217;</span><span
class="cmr-12">) and a local solver (</span><span class="lstinline"></span><span
class="cmtt-12">&#8217;</span><span
class="cmtt-12">SUB_SOLVE</span><span
class="cmtt-12">&#8217;</span><span
class="cmr-12">), as specified in</span>
<span
class="cmr-12">Tables</span><span
class="cmr-12">&#x00A0;</span><a
href="#x18-17014r7"><span
class="cmr-12">7</span><!--tex4ht:ref: tab:p_smoother --></a><span
class="cmr-12">-</span><a
href="#x18-17015r8"><span
class="cmr-12">8</span><!--tex4ht:ref: tab:p_smoother_1 --></a><span
class="cmr-12">. For example, the block-Jacobi smoother using ILU(0) on the blocks is</span>
<span
class="cmr-12">obtained by combining the block-Jacobi smoother object with the ILU(0) solver</span>
<span
class="cmr-12">object. Similarly, the hybrid Gauss-Seidel smoother (see Note in Table</span><span
class="cmr-12">&#x00A0;</span><a
href="#x18-17014r7"><span
class="cmr-12">7</span><!--tex4ht:ref: tab:p_smoother --></a><span
class="cmr-12">) is</span>
<span
class="cmr-12">obtained by combining the block-Jacobi smoother object with a single sweep of</span>
<span
class="cmr-12">the Gauss-Seidel solver object, while the point-Jacobi smoother is the result</span>
<span
class="cmr-12">of combining the block-Jacobi smoother object with a single sweep of the</span>
<span
class="cmr-12">point-Jacobi solver object. In the same way are obtained the </span><span
class="cmmi-12">&#x2113;</span><sub><span
class="cmr-8">1</span></sub><span
class="cmr-12">-versions of the</span>
<span
class="cmr-12">smoothers. However, for simplicity, shortcuts are provided to set all versions of</span>
<span
class="cmr-12">point-Jacobi, hybrid (forward) Gauss-Seidel, and hybrid backward Gauss-Seidel, i.e.,</span>
<span
class="cmr-12">the previous smoothers can be defined just by setting </span><span class="lstinline"></span><span
class="cmtt-12">&#8217;</span><span
class="cmtt-12">SMOOTHER_TYPE</span><span
class="cmtt-12">&#8217;</span> <span
class="cmr-12">to</span>
<span
class="cmr-12">certain specific values (see Tables</span><span
class="cmr-12">&#x00A0;</span><a
href="#x18-17014r7"><span
class="cmr-12">7</span><!--tex4ht:ref: tab:p_smoother --></a><span
class="cmr-12">), without the need to set </span><span class="lstinline"></span><span
class="cmtt-12">&#8217;</span><span
class="cmtt-12">SUB_SOLVE</span><span
class="cmtt-12">&#8217;</span> <span
class="cmr-12">as</span>
<span
class="cmr-12">well.</span>
<!--l. 166--><p class="indent" > <span
class="cmr-12">The smoother and solver objects are arranged in a hierarchical manner. When</span>
<span
class="cmr-12">specifying a smoother object, its parameters, including the local solver, are set to</span>
<span
class="cmr-12">their default values, and when a solver object is specified, its defaults are also</span>
<span
class="cmr-12">set, overriding in both cases any previous settings even if explicitly specified.</span>
<span
class="cmr-12">Therefore if the user sets a smoother, and wishes to use a solver different from</span>
<span
class="cmr-12">the default one, the call to set the solver must come </span><span
class="cmti-12">after </span><span
class="cmr-12">the call to set the</span>
<span
class="cmr-12">smoother.</span>
<!--l. 175--><p class="indent" > <span
class="cmr-12">Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi</span>
<span
class="cmr-12">coarsest-level solvers, and shortcuts are available in this case too (see Table</span><span
class="cmr-12">&#x00A0;</span><a
href="#x18-17012r5"><span
class="cmr-12">5</span><!--tex4ht:ref: tab:p_coarse_1 --></a><span
class="cmr-12">).</span>
<br
class="newline" />
<!--l. 179--><p class="indent" > <span
class="cmbx-12">Remark 3. </span><span
class="cmr-12">Many of the coarsest-level solvers cannot be used with both replicated</span>
<span
class="cmr-12">and distributed coarsest-matrix layouts; therefore, setting the solver after the layout</span>
<span
class="cmr-12">may change the layout. Similarly, setting the layout after the solver may change the</span>
<span
class="cmr-12">solver.</span>
<!--l. 184--><p class="indent" > <span
class="cmr-12">More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be</span>
<span
class="cmr-12">replicated, while SuperLU</span><span
class="cmr-12">_Dist and KRM require it to be distributed. In these cases,</span>
<span
class="cmr-12">setting the coarsest-level solver implies that the layout is redefined according to the</span>
<span
class="cmr-12">solver, ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel</span>
<span
class="cmr-12">and block-Jacobi can be applied to replicated and distributed matrices, thus their</span>
<span
class="cmr-12">choice does not modify any previously specified layout. It is worth noting that, when</span>
<span
class="cmr-12">the matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers</span>
<span
class="cmr-12">and their </span><span
class="cmmi-12">&#x2113;</span><sub><span
class="cmr-8">1</span></sub><span
class="cmsy-10x-x-120">- </span><span
class="cmr-12">versions reduce to the corresponding local solver objects (see Remark</span><span
class="cmr-12">&#x00A0;2).</span>
<span
class="cmr-12">For the point-Jacobi and Gauss-Seidel solvers, these objects correspond to a </span><span
class="cmti-12">single</span>
<span
class="cmr-12">point-Jacobi sweep and a </span><span
class="cmti-12">single </span><span
class="cmr-12">Gauss-Seidel sweep, respectively, which are very poor</span>
<span
class="cmr-12">solvers.</span>
<!--l. 199--><p class="indent" > <span
class="cmr-12">On the other hand, the distributed layout can be used with any solver but</span>
<span
class="cmr-12">UMFPACK and SuperLU; therefore, if any of these two solvers has already been</span>
<span
class="cmr-12">selected, the coarsest-level solver is changed to block-Jacobi, with the previously chosen</span>
<span
class="cmr-12">solver applied to the local blocks. Likewise, the replicated layout can be used with any</span>
<span
class="cmr-12">solver but SuperLu</span><span
class="cmr-12">_Dist and KRM; therefore, if SuperLu</span><span
class="cmr-12">_Dist or KRM have been</span>
<span
class="cmr-12">previously set, the coarsest-level solver is changed to the default sequential</span>
<span
class="cmr-12">solver.</span>
<!--l. 207--><p class="indent" > <span
class="cmbx-12">Remark 4. </span><span
class="cmr-12">The argument </span><span class="lstinline"></span><span
class="cmtt-12">idx</span> <span
class="cmr-12">can be used to allow finer control for those solvers;</span>
<span
class="cmr-12">for instance, by specifying the keyword </span><span class="lstinline"></span><span
class="cmtt-12">&#8217;</span><span
class="cmtt-12">MUMPS_IPAR_ENTRY</span><span
class="cmtt-12">&#8217;</span> <span
class="cmr-12">and an appropriate value</span>
<span
class="cmr-12">for </span><span class="lstinline"></span><span
class="cmtt-12">idx</span><span
class="cmr-12">, it is possible to set any entry in the MUMPS integer control array. See also</span>
<span
class="cmr-12">Sec.</span><span
class="cmr-12">&#x00A0;</span><a
href="userhtmlse6.html#x26-300006"><span
class="cmr-12">6</span><!--tex4ht:ref: sec:adding --></a><span
class="cmr-12">.</span>
<div class="table">
<!--l. 218--><p class="indent" > <a
id="x18-17009r2"></a><hr class="float"><div class="float"
>
<div class="center"
>
<!--l. 218--><p class="noindent" >
<div class="tabular"> <table id="TBL-4" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-4-1g"><col
id="TBL-4-1"></colgroup><colgroup id="TBL-4-2g"><col
id="TBL-4-2"></colgroup><colgroup id="TBL-4-3g"><col
id="TBL-4-3"></colgroup><colgroup id="TBL-4-4g"><col
id="TBL-4-4"></colgroup><colgroup id="TBL-4-5g"><col
id="TBL-4-5"></colgroup><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-4-1-"><td style="white-space:wrap; text-align:left;" id="TBL-4-1-1"
class="td11"><!--l. 222--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">what</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-4-1-2"
class="td11"><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">a</span><span
class="small-caps">t</span><span
class="small-caps">a</span> <span
class="small-caps">t</span><span
class="small-caps">y</span><span
class="small-caps">p</span><span
class="small-caps">e</span> </span></td><td style="white-space:wrap; text-align:left;" id="TBL-4-1-3"
class="td11"><!--l. 222--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">val</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-4-1-4"
class="td11"><!--l. 222--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">e</span><span
class="small-caps">f</span><span
class="small-caps">a</span><span
class="small-caps">u</span><span
class="small-caps">l</span><span
class="small-caps">t</span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-4-1-5"
class="td11"><!--l. 223--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">c</span><span
class="small-caps">o</span><span
class="small-caps">m</span><span
class="small-caps">m</span><span
class="small-caps">e</span><span
class="small-caps">n</span><span
class="small-caps">t</span><span
class="small-caps">s</span></span> </td></tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-4-2-"><td style="white-space:wrap; text-align:left;" id="TBL-4-2-1"
class="td11"><!--l. 224--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">ML_CYCLE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-4-2-2"
class="td11"><span class="lstinline"></span><!--l. 224--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-4-2-3"
class="td11"><!--l. 225--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">VCYCLE</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 225--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">WCYCLE</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 225--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KCYCLE</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 225--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">ADD</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-4-2-4"
class="td11"><!--l. 226--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">VCYCLE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-4-2-5"
class="td11"><!--l. 227--><p class="noindent" >Multilevel cycle: V-cycle, W-cycle, K-cycle,
and additive composition. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-4-3-"><td style="white-space:wrap; text-align:left;" id="TBL-4-3-1"
class="td11"><!--l. 228--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">CYCLE_SWEEPS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-4-3-2"
class="td11"><span class="lstinline"></span><!--l. 228--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-4-3-3"
class="td11"><!--l. 229--><p class="noindent" >Any integer
<!--l. 229--><p class="noindent" >number <span
class="cmsy-10x-x-109">&#x2265; </span>1 </td><td style="white-space:wrap; text-align:left;" id="TBL-4-3-4"
class="td11"><!--l. 229--><p class="noindent" >1 </td><td style="white-space:wrap; text-align:left;" id="TBL-4-3-5"
class="td11"><!--l. 230--><p class="noindent" >Number of multilevel cycles. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-4-4-"><td style="white-space:wrap; text-align:left;" id="TBL-4-4-1"
class="td11"> </td></tr></table></div></div>
<br /> <div class="caption"
><span class="id">Table&#x00A0;2: </span><span
class="content">Parameters defining the multilevel cycle and the number of cycles to be
applied. </span></div><!--tex4ht:label?: x18-17009r2 -->
</div><hr class="endfloat" />
</div>
<div class="table">
<!--l. 240--><p class="indent" > <a
id="x18-17010r3"></a><hr class="float"><div class="float"
>
<div class="center"
>
<!--l. 240--><p class="noindent" >
<div class="tabular"> <table id="TBL-5" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-5-1g"><col
id="TBL-5-1"></colgroup><colgroup id="TBL-5-2g"><col
id="TBL-5-2"></colgroup><colgroup id="TBL-5-3g"><col
id="TBL-5-3"></colgroup><colgroup id="TBL-5-4g"><col
id="TBL-5-4"></colgroup><colgroup id="TBL-5-5g"><col
id="TBL-5-5"></colgroup><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-1-"><td style="white-space:wrap; text-align:left;" id="TBL-5-1-1"
class="td11"><!--l. 244--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">what</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-1-2"
class="td11"><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">a</span><span
class="small-caps">t</span><span
class="small-caps">a</span> <span
class="small-caps">t</span><span
class="small-caps">y</span><span
class="small-caps">p</span><span
class="small-caps">e</span> </span></td><td style="white-space:wrap; text-align:left;" id="TBL-5-1-3"
class="td11"><!--l. 244--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">val</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-1-4"
class="td11"><!--l. 244--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">e</span><span
class="small-caps">f</span><span
class="small-caps">a</span><span
class="small-caps">u</span><span
class="small-caps">l</span><span
class="small-caps">t</span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-1-5"
class="td11"><!--l. 245--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">c</span><span
class="small-caps">o</span><span
class="small-caps">m</span><span
class="small-caps">m</span><span
class="small-caps">e</span><span
class="small-caps">n</span><span
class="small-caps">t</span><span
class="small-caps">s</span></span> </td></tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-2-"><td style="white-space:wrap; text-align:left;" id="TBL-5-2-1"
class="td11"><!--l. 246--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MIN_COARSE_SIZE_PER_PROCESS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-2-2"
class="td11"><span class="lstinline"></span><!--l. 246--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-2-3"
class="td11"><!--l. 247--><p class="noindent" >Any number
<!--l. 247--><p class="noindent" ><span
class="cmmi-10x-x-109">&#x003E; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-2-4"
class="td11"><!--l. 248--><p class="noindent" >200 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-2-5"
class="td11"><!--l. 249--><p class="noindent" >Coarse size threshold per process. The
aggregation stops if the global number of
variables of the computed coarsest matrix
is lower than or equal to this threshold
multiplied by the number of processes
(see Note). </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-3-"><td style="white-space:wrap; text-align:left;" id="TBL-5-3-1"
class="td11"><!--l. 255--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MIN_COARSE_SIZE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-3-2"
class="td11"><span class="lstinline"></span><!--l. 255--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-3-3"
class="td11"><!--l. 256--><p class="noindent" >Any number
<!--l. 256--><p class="noindent" ><span
class="cmmi-10x-x-109">&#x003E; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-3-4"
class="td11"><!--l. 257--><p class="noindent" >-1 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-3-5"
class="td11"><!--l. 258--><p class="noindent" >Coarse size threshold. The aggregation
stops if the global number of variables
of the computed coarsest matrix is lower
than or equal
to this threshold (see Note). If negative,
it is ignored in favour of the default for
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MIN_COARSE_SIZE_PER_PROCESS</span><span
class="cmtt-10x-x-109">&#8217;</span>. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-4-"><td style="white-space:wrap; text-align:left;" id="TBL-5-4-1"
class="td11"><!--l. 267--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MIN_CR_RATIO</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-4-2"
class="td11"><span class="lstinline"></span><!--l. 267--><p class="noindent" ><span
class="cmtt-10x-x-109">real</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-4-3"
class="td11"><!--l. 268--><p class="noindent" >Any number
<!--l. 268--><p class="noindent" ><span
class="cmmi-10x-x-109">&#x003E; </span>1 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-4-4"
class="td11"><!--l. 269--><p class="noindent" >1.5 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-4-5"
class="td11"><!--l. 270--><p class="noindent" >Minimum coarsening
ratio. The aggregation stops if the ratio
between the global matrix dimensions at
two consecutive levels is lower than or
equal to this threshold (see Note). </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-5-"><td style="white-space:wrap; text-align:left;" id="TBL-5-5-1"
class="td11"><!--l. 275--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MAX_LEVS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-5-2"
class="td11"><span class="lstinline"></span><!--l. 275--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-5-3"
class="td11"><!--l. 276--><p class="noindent" >Any integer
<!--l. 276--><p class="noindent" >number <span
class="cmmi-10x-x-109">&#x003E; </span>1 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-5-4"
class="td11"><!--l. 277--><p class="noindent" >20 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-5-5"
class="td11"><!--l. 278--><p class="noindent" >Maximum number of levels. The
aggregation stops if the number of levels
reaches this value (see Note). </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-6-"><td style="white-space:wrap; text-align:left;" id="TBL-5-6-1"
class="td11"><!--l. 280--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">PAR_AGGR_ALG</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-6-2"
class="td11"><span class="lstinline"></span><!--l. 280--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-6-3"
class="td11"><!--l. 281--><p class="noindent" ><span
class="cmtt-10x-x-109">&#8217;DEC&#8217;</span>,
<span
class="cmtt-10x-x-109">&#8217;SYMDEC&#8217;</span>,
<span
class="cmtt-10x-x-109">&#8217;COUPLED&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-6-4"
class="td11"><!--l. 282--><p class="noindent" ><span
class="cmtt-10x-x-109">&#8217;DEC&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-6-5"
class="td11"><!--l. 283--><p class="noindent" >Parallel aggregation algorithm.
<!--l. 283--><p class="noindent" >the <span class="lstinline"></span><span
class="cmtt-10x-x-109">SYMDEC</span> option applies decoupled
aggregation to the sparsity pattern of
<span
class="cmmi-10x-x-109">A </span>+ <span
class="cmmi-10x-x-109">A</span><sup><span
class="cmmi-8">T</span> </sup>. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-7-"><td style="white-space:wrap; text-align:left;" id="TBL-5-7-1"
class="td11"><!--l. 300--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">AGGR_TYPE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-7-2"
class="td11"><span class="lstinline"></span><!--l. 300--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-7-3"
class="td11"><!--l. 301--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">SOC1</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">SOC2</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MATCHBOXP</span><span
class="cmtt-10x-x-109">&#8217;</span></td><td style="white-space:wrap; text-align:left;" id="TBL-5-7-4"
class="td11"><!--l. 304--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">SOC1</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-7-5"
class="td11"><!--l. 305--><p class="noindent" >Type of aggregation algorithm: currently,
for the
decoupled aggregation we implement two
measures of strength of connection, the
one by Van&#x011B;k, Mandel and Brezina&#x00A0;<span class="cite">[<a
href="userhtmlli5.html#XVANEK_MANDEL_BREZINA">33</a>]</span>,
and the one by Gratton et al&#x00A0;<span class="cite">[<a
href="userhtmlli5.html#XGrHeJi:16">23</a>]</span>. The
coupled aggregation is based on a parallel
version of the half-approximate matching
implemented in the MatchBox-P software
package&#x00A0;<span class="cite">[<a
href="userhtmlli5.html#XMatchBoxP">9</a>]</span>. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-8-"><td style="white-space:wrap; text-align:left;" id="TBL-5-8-1"
class="td11"><!--l. 313--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">AGGR_SIZE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-8-2"
class="td11"><span class="lstinline"></span><!--l. 313--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-8-3"
class="td11"><!--l. 314--><p class="noindent" >Any integer
<!--l. 314--><p class="noindent" >power of 2,
with
<span
class="cmtt-10x-x-109">aggr</span><span
class="cmtt-10x-x-109">_size</span> <span
class="cmsy-10x-x-109">&#x2265;</span>
2 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-8-4"
class="td11"><!--l. 315--><p class="noindent" >4 </td><td style="white-space:wrap; text-align:left;" id="TBL-5-8-5"
class="td11"><!--l. 316--><p class="noindent" >Maximum size of aggregates when the
coupled aggregation based on matching
is applied. For aggressive coarsening
with size of aggregate larger than 8
we recommend the use of smoothed
prolongators. Used only with <span
class="cmtt-10x-x-109">&#8217;COUPLED&#8217;</span>
and <span
class="cmtt-10x-x-109">&#8217;MATCHBOXP&#8217;</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-9-"><td style="white-space:wrap; text-align:left;" id="TBL-5-9-1"
class="td11"><!--l. 321--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">AGGR_PROL</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-5-9-2"
class="td11"><span class="lstinline"></span><!--l. 321--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-9-3"
class="td11"><!--l. 322--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">SMOOTHED</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">UNSMOOTHED</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-9-4"
class="td11"><!--l. 322--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">SMOOTHED</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-5-9-5"
class="td11"><!--l. 323--><p class="noindent" >Prolongator used by the aggregation
algorithm: smoothed or unsmoothed (i.e.,
tentative prolongator). </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-10-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-5-10-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;"><span
class="cmbx-10x-x-109">Note. </span>The aggregation algorithm stops when at least one of the following criteria is met: the coarse size threshold, </div>
</tr><tr
style="vertical-align:baseline;" id="TBL-5-11-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-5-11-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;">the minimum coarsening ratio, or the maximum number of levels is reached.</div>
</tr><tr
style="vertical-align:baseline;" id="TBL-5-12-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-5-12-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;">Therefore, the actual number of levels may be smaller than the specified maximum number of levels. </div>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-5-13-"><td style="white-space:wrap; text-align:left;" id="TBL-5-13-1"
class="td11"> </td></tr></table>
</div>
<br /> <div class="caption"
><span class="id">Table&#x00A0;3: </span><span
class="content">Parameters defining the aggregation algorithm. </span></div><!--tex4ht:label?: x18-17010r3 -->
</div>
</div><hr class="endfloat" />
</div>
<div class="table">
<!--l. 341--><p class="indent" > <a
id="x18-17011r4"></a><hr class="float"><div class="float"
>
<div class="center"
>
<!--l. 341--><p class="noindent" >
<div class="tabular"> <table id="TBL-6" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-6-1g"><col
id="TBL-6-1"></colgroup><colgroup id="TBL-6-2g"><col
id="TBL-6-2"></colgroup><colgroup id="TBL-6-3g"><col
id="TBL-6-3"></colgroup><colgroup id="TBL-6-4g"><col
id="TBL-6-4"></colgroup><colgroup id="TBL-6-5g"><col
id="TBL-6-5"></colgroup><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-6-1-"><td style="white-space:wrap; text-align:left;" id="TBL-6-1-1"
class="td11"><!--l. 345--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">what</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-6-1-2"
class="td11"><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">a</span><span
class="small-caps">t</span><span
class="small-caps">a</span> <span
class="small-caps">t</span><span
class="small-caps">y</span><span
class="small-caps">p</span><span
class="small-caps">e</span> </span></td><td style="white-space:wrap; text-align:left;" id="TBL-6-1-3"
class="td11"><!--l. 345--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">val</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-1-4"
class="td11"><!--l. 345--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">e</span><span
class="small-caps">f</span><span
class="small-caps">a</span><span
class="small-caps">u</span><span
class="small-caps">l</span><span
class="small-caps">t</span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-1-5"
class="td11"><!--l. 346--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">c</span><span
class="small-caps">o</span><span
class="small-caps">m</span><span
class="small-caps">m</span><span
class="small-caps">e</span><span
class="small-caps">n</span><span
class="small-caps">t</span><span
class="small-caps">s</span></span> </td></tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-6-2-"><td style="white-space:wrap; text-align:left;" id="TBL-6-2-1"
class="td11"><!--l. 348--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">AGGR_ORD</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-6-2-2"
class="td11"><span class="lstinline"></span><!--l. 348--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-2-3"
class="td11"><!--l. 349--><p class="noindent" ><span
class="cmtt-10x-x-109">&#8217;NATURAL&#8217;</span>
<!--l. 349--><p class="noindent" ><span
class="cmtt-10x-x-109">&#8217;DEGREE&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-2-4"
class="td11"><!--l. 350--><p class="noindent" ><span
class="cmtt-10x-x-109">&#8217;NATURAL&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-2-5"
class="td11"><!--l. 351--><p class="noindent" >Initial ordering of indices for
the decoupled aggregation algorithm:
either natural ordering or sorted by
descending degrees of the nodes in the
matrix graph. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-6-3-"><td style="white-space:wrap; text-align:left;" id="TBL-6-3-1"
class="td11"><!--l. 358--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">AGGR_THRESH</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-6-3-2"
class="td11"><span class="lstinline"></span><!--l. 358--><p class="noindent" ><span
class="cmtt-10x-x-109">real</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">kind_parameter</span><span
class="cmtt-10x-x-109">)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-3-3"
class="td11"><!--l. 359--><p class="noindent" >Any&#x00A0;real
<!--l. 359--><p class="noindent" >number&#x00A0;<span
class="cmsy-10x-x-109">&#x2208;</span>
[0<span
class="cmmi-10x-x-109">,</span>1] </td><td style="white-space:wrap; text-align:left;" id="TBL-6-3-4"
class="td11"><!--l. 360--><p class="noindent" >0.01 </td><td style="white-space:wrap; text-align:left;" id="TBL-6-3-5"
class="td11"><!--l. 361--><p class="noindent" >The threshold <span
class="cmmi-10x-x-109">&#x03B8; </span>in the strength of
connection algorithm. See also the note
at the bottom of this table. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-6-4-"><td style="white-space:wrap; text-align:left;" id="TBL-6-4-1"
class="td11"><!--l. 364--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">AGGR_FILTER</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-6-4-2"
class="td11"><span class="lstinline"></span><!--l. 365--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-4-3"
class="td11"><!--l. 366--><p class="noindent" ><span
class="cmtt-10x-x-109">&#8217;FILTER&#8217;</span>
<!--l. 366--><p class="noindent" ><span
class="cmtt-10x-x-109">&#8217;NOFILTER&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-4-4"
class="td11"><!--l. 367--><p class="noindent" ><span
class="cmtt-10x-x-109">&#8217;NOFILTER&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-6-4-5"
class="td11"><!--l. 368--><p class="noindent" >Matrix used in computing the smoothed
prolongator: filtered or unfiltered. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-6-5-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-6-5-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;"><span
class="cmbx-10x-x-109">Note. </span>Different thresholds at different levels, such as those used in <span class="cite">[<a
href="userhtmlli5.html#XVANEK_MANDEL_BREZINA">33</a>, Section&#x00A0;5.1]</span>, can be easily set by invoking the rou-</div>
</tr><tr
style="vertical-align:baseline;" id="TBL-6-6-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-6-6-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;">tine <span
class="cmtt-10x-x-109">set </span>with the parameter <span
class="cmtt-10x-x-109">ilev</span>.</div>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-6-7-"><td style="white-space:wrap; text-align:left;" id="TBL-6-7-1"
class="td11"> </td></tr></table></div></div>
<br /> <div class="caption"
><span class="id">Table&#x00A0;4: </span><span
class="content">Parameters defining the aggregation algorithm (continued). </span></div><!--tex4ht:label?: x18-17011r4 -->
</div><hr class="endfloat" />
</div>
<div class="table">
<!--l. 385--><p class="indent" > <a
id="x18-17012r5"></a><hr class="float"><div class="float"
>
<div class="center"
>
<!--l. 385--><p class="noindent" >
<div class="tabular"> <table id="TBL-7" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-7-1g"><col
id="TBL-7-1"></colgroup><colgroup id="TBL-7-2g"><col
id="TBL-7-2"></colgroup><colgroup id="TBL-7-3g"><col
id="TBL-7-3"></colgroup><colgroup id="TBL-7-4g"><col
id="TBL-7-4"></colgroup><colgroup id="TBL-7-5g"><col
id="TBL-7-5"></colgroup><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-1-"><td style="white-space:wrap; text-align:left;" id="TBL-7-1-1"
class="td11"><!--l. 388--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">what</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-7-1-2"
class="td11"><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">a</span><span
class="small-caps">t</span><span
class="small-caps">a</span> <span
class="small-caps">t</span><span
class="small-caps">y</span><span
class="small-caps">p</span><span
class="small-caps">e</span> </span></td><td style="white-space:wrap; text-align:left;" id="TBL-7-1-3"
class="td11"><!--l. 388--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">val</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-1-4"
class="td11"><!--l. 388--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">e</span><span
class="small-caps">f</span><span
class="small-caps">a</span><span
class="small-caps">u</span><span
class="small-caps">l</span><span
class="small-caps">t</span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-1-5"
class="td11"><!--l. 389--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">c</span><span
class="small-caps">o</span><span
class="small-caps">m</span><span
class="small-caps">m</span><span
class="small-caps">e</span><span
class="small-caps">n</span><span
class="small-caps">t</span><span
class="small-caps">s</span></span> </td></tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-2-"><td style="white-space:wrap; text-align:left;" id="TBL-7-2-1"
class="td11"><!--l. 390--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">COARSE_MAT</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-7-2-2"
class="td11"><span class="lstinline"></span><!--l. 390--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-2-3"
class="td11"><!--l. 391--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">DIST</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 391--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">REPL</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-2-4"
class="td11"><!--l. 392--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">REPL</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-2-5"
class="td11"><!--l. 393--><p class="noindent" >Coarsest matrix layout: distributed among the
processes or replicated on each of them. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-3-"><td style="white-space:wrap; text-align:left;" id="TBL-7-3-1"
class="td11"><!--l. 395--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">COARSE_SOLVE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-7-3-2"
class="td11"><span class="lstinline"></span><!--l. 395--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-3-3"
class="td11"><!--l. 396--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MUMPS</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 396--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">UMF</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 397--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">SLU</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 397--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">SLUDIST</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 398--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">JACOBI</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 398--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">GS</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 398--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BJAC</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 398--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM</span><span
class="cmtt-10x-x-109">&#8217;</span>
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">L1</span><span
class="cmtt-10x-x-109">-</span><span
class="cmtt-10x-x-109">JACOBI</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 399--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">L1</span><span
class="cmtt-10x-x-109">-</span><span
class="cmtt-10x-x-109">BJAC</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 399--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">L1</span><span
class="cmtt-10x-x-109">-</span><span
class="cmtt-10x-x-109">FBGS</span><span
class="cmtt-10x-x-109">&#8217;</span></td><td style="white-space:wrap; text-align:left;" id="TBL-7-3-4"
class="td11"><!--l. 400--><p class="noindent" >See&#x00A0;Note.</td><td style="white-space:wrap; text-align:left;" id="TBL-7-3-5"
class="td11"><!--l. 401--><p class="noindent" >Solver used at the coarsest level: sequential
LU from MUMPS, UMFPACK, or SuperLU
(plus triangular solve); distributed LU from
MUMPS or SuperLU_Dist (plus triangular solve);
point-Jacobi, hybrid Gauss-Seidel or block-Jacobi
and related <span
class="cmmi-10x-x-109">&#x2113;</span><sub><span
class="cmr-8">1</span></sub>-versions; Krylov Method (flexible
Conjugate Gradient) coupled with the block-Jacobi
preconditioner with ILU(0) on the blocks. Note
that <span
class="cmtt-10x-x-109">UMF </span>and <span
class="cmtt-10x-x-109">SLU </span>require the coarsest matrix to
be replicated, <span
class="cmtt-10x-x-109">SLUDIST</span>, <span
class="cmtt-10x-x-109">JACOBI</span>, <span
class="cmtt-10x-x-109">GS</span>, <span
class="cmtt-10x-x-109">BJAC </span>and <span
class="cmtt-10x-x-109">KRM</span>
require it to be distributed, <span
class="cmtt-10x-x-109">MUMPS </span>can be used with
either a replicated or a distributed matrix. When
any of the previous solvers is specified, the matrix
layout is set to a default value which allows the use
of the solver (see Remark 3, p.&#x00A0;24). Note also that
UMFPACK and SuperLU_Dist are available only in
double precision. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-4-"><td style="white-space:wrap; text-align:left;" id="TBL-7-4-1"
class="td11"><!--l. 431--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">COARSE_SUBSOLVE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-7-4-2"
class="td11"><span class="lstinline"></span><!--l. 431--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-4-3"
class="td11"><!--l. 432--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">ILU</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 432--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">ILUT</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 432--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MILU</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 433--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">MUMPS</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 433--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">SLU</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 433--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">UMF</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 434--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">INVT</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 434--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">INVK</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 434--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">AINV</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-4-4"
class="td11"><!--l. 435--><p class="noindent" >See&#x00A0;Note.</td><td style="white-space:wrap; text-align:left;" id="TBL-7-4-5"
class="td11"><!--l. 436--><p class="noindent" >Solver for the diagonal blocks of the coarsest
matrix, in case the block Jacobi solver is chosen
as coarsest-level solver: ILU(<span
class="cmmi-10x-x-109">p</span>), ILU(<span
class="cmmi-10x-x-109">p,t</span>), MILU(<span
class="cmmi-10x-x-109">p</span>),
LU from MUMPS, SuperLU or UMFPACK
(plus triangular solve), Approximate Inverses
INVK(<span
class="cmmi-10x-x-109">p,q</span>), INVT(<span
class="cmmi-10x-x-109">p</span><sub><span
class="cmr-8">1</span></sub><span
class="cmmi-10x-x-109">,p</span>2<span
class="cmmi-10x-x-109">,t</span><sub><span
class="cmr-8">1</span></sub><span
class="cmmi-10x-x-109">,t</span><sub><span
class="cmr-8">2</span></sub>) and AINV(<span
class="cmmi-10x-x-109">t</span>); note
that approximate inverses are specifically suited
for GPUs since they do not employ triangular
system solve kernels, see&#x00A0;<span class="cite">[<a
href="userhtmlli5.html#XBERTACCINIFILIPPONE">3</a>]</span>. Note that UMFPACK
and SuperLU_Dist are available only in double
precision. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-5-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-7-5-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;"><span
class="cmbx-10x-x-109">Note. </span>Defaults for <span
class="cmtt-10x-x-109">COARSE</span><span
class="cmtt-10x-x-109">_SOLVE </span>and <span
class="cmtt-10x-x-109">COARSE</span><span
class="cmtt-10x-x-109">_SUBSOLVE </span>are chosen in the following order:</div>
</tr><tr
style="vertical-align:baseline;" id="TBL-7-6-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-7-6-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;">single precision version &#8211; <span
class="cmtt-10x-x-109">MUMPS </span>if installed, then <span
class="cmtt-10x-x-109">SLU </span>if installed, <span
class="cmtt-10x-x-109">ILU </span>otherwise;</div>
</tr><tr
style="vertical-align:baseline;" id="TBL-7-7-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-7-7-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;">double precision version &#8211; <span
class="cmtt-10x-x-109">UMF </span>if installed, then <span
class="cmtt-10x-x-109">MUMPS </span>if installed, then <span
class="cmtt-10x-x-109">SLU </span>if installed, <span
class="cmtt-10x-x-109">ILU </span>otherwise.</div>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-8-"><td style="white-space:wrap; text-align:left;" id="TBL-7-8-1"
class="td11"><!--l. 467--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">what</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-7-8-2"
class="td11"><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">a</span><span
class="small-caps">t</span><span
class="small-caps">a</span> <span
class="small-caps">t</span><span
class="small-caps">y</span><span
class="small-caps">p</span><span
class="small-caps">e</span> </span></td><td style="white-space:wrap; text-align:left;" id="TBL-7-8-3"
class="td11"><!--l. 467--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">val</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-8-4"
class="td11"><!--l. 467--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">e</span><span
class="small-caps">f</span><span
class="small-caps">a</span><span
class="small-caps">u</span><span
class="small-caps">l</span><span
class="small-caps">t</span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-8-5"
class="td11"><!--l. 468--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">c</span><span
class="small-caps">o</span><span
class="small-caps">m</span><span
class="small-caps">m</span><span
class="small-caps">e</span><span
class="small-caps">n</span><span
class="small-caps">t</span><span
class="small-caps">s</span></span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-9-"><td style="white-space:wrap; text-align:left;" id="TBL-7-9-1"
class="td11"><!--l. 469--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">COARSE_SWEEPS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-7-9-2"
class="td11"><span class="lstinline"></span><!--l. 469--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-9-3"
class="td11"><!--l. 470--><p class="noindent" >Any
integer
<!--l. 470--><p class="noindent" >number <span
class="cmmi-10x-x-109">&#x003E;</span>
0 </td><td style="white-space:wrap; text-align:left;" id="TBL-7-9-4"
class="td11"><!--l. 471--><p class="noindent" >10 </td><td style="white-space:wrap; text-align:left;" id="TBL-7-9-5"
class="td11"><!--l. 472--><p class="noindent" >Number of sweeps when <span class="lstinline"></span><span
class="cmtt-10x-x-109">JACOBI</span>, <span class="lstinline"></span><span
class="cmtt-10x-x-109">GS</span> or <span class="lstinline"></span><span
class="cmtt-10x-x-109">BJAC</span> is
chosen as coarsest-level solver. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-10-"><td style="white-space:wrap; text-align:left;" id="TBL-7-10-1"
class="td11"><!--l. 474--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">COARSE_FILLIN</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-7-10-2"
class="td11"><span class="lstinline"></span><!--l. 474--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-10-3"
class="td11"><!--l. 475--><p class="noindent" >Any
integer
<!--l. 475--><p class="noindent" >number <span
class="cmsy-10x-x-109">&#x2265;</span>
0 </td><td style="white-space:wrap; text-align:left;" id="TBL-7-10-4"
class="td11"><!--l. 476--><p class="noindent" >0 </td><td style="white-space:wrap; text-align:left;" id="TBL-7-10-5"
class="td11"><!--l. 477--><p class="noindent" >Fill-in level <span
class="cmmi-10x-x-109">p </span>of the ILU factorizations and first
fill-in for the approximate inverses. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-11-"><td style="white-space:wrap; text-align:left;" id="TBL-7-11-1"
class="td11"><!--l. 479--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">COARSE_ILUTHRS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-7-11-2"
class="td11"><span class="lstinline"></span><!--l. 480--><p class="noindent" ><span
class="cmtt-10x-x-109">real</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">kind_parameter</span><span
class="cmtt-10x-x-109">)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-7-11-3"
class="td11"><!--l. 481--><p class="noindent" >Any real
<!--l. 481--><p class="noindent" >number <span
class="cmsy-10x-x-109">&#x2265;</span>
0 </td><td style="white-space:wrap; text-align:left;" id="TBL-7-11-4"
class="td11"><!--l. 482--><p class="noindent" >0 </td><td style="white-space:wrap; text-align:left;" id="TBL-7-11-5"
class="td11"><!--l. 483--><p class="noindent" >Drop tolerance <span
class="cmmi-10x-x-109">t </span>in the ILU(<span
class="cmmi-10x-x-109">p,t</span>) factorization and
first drop-tolerance for the approximate inverses. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-12-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-7-12-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;"><span
class="cmbx-10x-x-109">Note. </span>Further options for coarse solvers are contained in Table&#x00A0;<a
href="#x18-17013r6">6<!--tex4ht:ref: tab:p_coarse_2 --></a>.</div>
</tr><tr
style="vertical-align:baseline;" id="TBL-7-13-"><td colspan="3" style="white-space:wrap; text-align:left;" id="TBL-7-13-1"
class="td11"></td><div class="multicolumn" style="white-space:nowrap; text-align:left;">For a first use it is suggested to use the default options obtained by simply selecting the solver type.</div>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-7-14-"><td style="white-space:wrap; text-align:left;" id="TBL-7-14-1"
class="td11"> </td></tr></table>
</div></div>
<br /> <div class="caption"
><span class="id">Table&#x00A0;5: </span><span
class="content">Parameters defining the solver at the coarsest level (continued).</span></div><!--tex4ht:label?: x18-17012r5 -->
</div><hr class="endfloat" />
</div>
<div class="table">
<!--l. 496--><p class="indent" > <a
id="x18-17013r6"></a><hr class="float"><div class="float"
>
<div class="center"
>
<!--l. 496--><p class="noindent" >
<div class="tabular"> <table id="TBL-8" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-8-1g"><col
id="TBL-8-1"></colgroup><colgroup id="TBL-8-2g"><col
id="TBL-8-2"></colgroup><colgroup id="TBL-8-3g"><col
id="TBL-8-3"></colgroup><colgroup id="TBL-8-4g"><col
id="TBL-8-4"></colgroup><colgroup id="TBL-8-5g"><col
id="TBL-8-5"></colgroup><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-1-"><td style="white-space:wrap; text-align:left;" id="TBL-8-1-1"
class="td11"><!--l. 499--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">what</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-1-2"
class="td11"><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">a</span><span
class="small-caps">t</span><span
class="small-caps">a</span> <span
class="small-caps">t</span><span
class="small-caps">y</span><span
class="small-caps">p</span><span
class="small-caps">e</span> </span></td><td style="white-space:wrap; text-align:left;" id="TBL-8-1-3"
class="td11"><!--l. 499--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">val</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-1-4"
class="td11"><!--l. 499--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">d</span><span
class="small-caps">e</span><span
class="small-caps">f</span><span
class="small-caps">a</span><span
class="small-caps">u</span><span
class="small-caps">l</span><span
class="small-caps">t</span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-1-5"
class="td11"><!--l. 500--><p class="noindent" ><span
class="cmcsc-10x-x-109"><span
class="small-caps">c</span><span
class="small-caps">o</span><span
class="small-caps">m</span><span
class="small-caps">m</span><span
class="small-caps">e</span><span
class="small-caps">n</span><span
class="small-caps">t</span><span
class="small-caps">s</span></span> </td></tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-2-"><td style="white-space:wrap; text-align:left;" id="TBL-8-2-1"
class="td11"><!--l. 501--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BJAC_STOP</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-2-2"
class="td11"><span class="lstinline"></span><!--l. 501--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-2-3"
class="td11"><!--l. 501--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FALSE</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 501--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">TRUE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-2-4"
class="td11"><!--l. 501--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FALSE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-2-5"
class="td11"><!--l. 501--><p class="noindent" >Select whether to use a stopping criterion for
the Block-Jacobi method used as a coarse
solver. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-3-"><td style="white-space:wrap; text-align:left;" id="TBL-8-3-1"
class="td11"><!--l. 502--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BJAC_TRACE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-3-2"
class="td11"><span class="lstinline"></span><!--l. 502--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-3-3"
class="td11"><!--l. 502--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FALSE</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 502--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">TRUE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-3-4"
class="td11"><!--l. 502--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FALSE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-3-5"
class="td11"><!--l. 502--><p class="noindent" >Select whether to print a trace for the
calculated residual for the Block-Jacobi
method used as a coarse solver. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-4-"><td style="white-space:wrap; text-align:left;" id="TBL-8-4-1"
class="td11"><!--l. 503--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BJAC_ITRACE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-4-2"
class="td11"><span class="lstinline"></span><!--l. 503--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-3"
class="td11"><!--l. 503--><p class="noindent" >Any integer
<!--l. 503--><p class="noindent" ><span
class="cmmi-10x-x-109">&#x003E; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-4"
class="td11"><!--l. 503--><p class="noindent" >-1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-5"
class="td11"><!--l. 503--><p class="noindent" >Number of iterations after which a trace is to
be printed. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-5-"><td style="white-space:wrap; text-align:left;" id="TBL-8-5-1"
class="td11"><!--l. 504--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BJAC_RESCHECK</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-5-2"
class="td11"><span class="lstinline"></span><!--l. 504--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-3"
class="td11"><!--l. 504--><p class="noindent" >Any integer
<!--l. 504--><p class="noindent" ><span
class="cmmi-10x-x-109">&#x003E; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-4"
class="td11"><!--l. 504--><p class="noindent" >-1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-5"
class="td11"><!--l. 504--><p class="noindent" >Number of iterations after which a residual is
to be calculated. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-6-"><td style="white-space:wrap; text-align:left;" id="TBL-8-6-1"
class="td11"><!--l. 505--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BJAC_STOPTOL</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-6-2"
class="td11"><span class="lstinline"></span><!--l. 505--><p class="noindent" ><span
class="cmtt-10x-x-109">real</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">kind_parameter</span><span
class="cmtt-10x-x-109">)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-3"
class="td11"><!--l. 505--><p class="noindent" >Any real
<!--l. 505--><p class="noindent" ><span
class="cmmi-10x-x-109">&#x003C; </span>1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-4"
class="td11"><!--l. 505--><p class="noindent" >0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-5"
class="td11"><!--l. 505--><p class="noindent" >Tolerance for the stopping criterion on the
residual. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-7-"><td style="white-space:wrap; text-align:left;" id="TBL-8-7-1"
class="td11"><!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_METHOD</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-7-2"
class="td11"><span class="lstinline"></span><!--l. 506--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-7-3"
class="td11"><!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">CG</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FCG</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">CGS</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">CGR</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BICG</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BICGSTAB</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BICGSTABL</span><span
class="cmtt-10x-x-109">&#8217;</span>
<!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">RGMRES</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-7-4"
class="td11"><!--l. 506--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FCG</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-7-5"
class="td11"><!--l. 506--><p class="noindent" >A string that defines the iterative method to
be used when employing a Krylov method
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM</span><span
class="cmtt-10x-x-109">&#8217;</span> as a coarse solver. <span
class="cmtt-10x-x-109">CG </span>the Conjugate
Gradient method; <span
class="cmtt-10x-x-109">FCG </span>the Flexible Conjugate
Gradient method; <span
class="cmtt-10x-x-109">CGS </span>the Conjugate Gradient
Stabilized
method; <span
class="cmtt-10x-x-109">GCR </span>the Generalized Conjugate
Residual method; <span
class="cmtt-10x-x-109">FCG </span>the Flexible Conjugate
Gradient method; <span
class="cmtt-10x-x-109">BICG </span>the Bi-Conjugate
Gradient method; <span
class="cmtt-10x-x-109">BICGSTAB </span>the Bi-Conjugate
Gradient Stabilized method; <span
class="cmtt-10x-x-109">BICGSTABL </span>the
Bi-Conjugate Gradient Stabilized method
with restarting; <span
class="cmtt-10x-x-109">RGMRES </span>the Generalized
Minimal Residual method with restarting.
Refer to the PSBLAS guide&#x00A0;<span class="cite">[<a
href="userhtmlli5.html#XPSBLASGUIDE">20</a>]</span> for further
information. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-8-"><td style="white-space:wrap; text-align:left;" id="TBL-8-8-1"
class="td11"><!--l. 516--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_KPREC</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-8-2"
class="td11"><span class="lstinline"></span><!--l. 516--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-8-3"
class="td11"><!--l. 516--><p class="noindent" >Table&#x00A0;<a
href="userhtmlse4.html#x14-13015r1">1<!--tex4ht:ref: tab:precinit --></a> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-8-4"
class="td11"><!--l. 516--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BJAC</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-8-5"
class="td11"><!--l. 516--><p class="noindent" >The one-level
preconditioners from the Table&#x00A0;<a
href="userhtmlse4.html#x14-13015r1">1<!--tex4ht:ref: tab:precinit --></a> can be used
for the coarse Krylov solver. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-9-"><td style="white-space:wrap; text-align:left;" id="TBL-8-9-1"
class="td11"><!--l. 528--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_SUB_SOLVE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-9-2"
class="td11"><span class="lstinline"></span><!--l. 528--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-9-3"
class="td11"><!--l. 528--><p class="noindent" >Table&#x00A0;<a
href="#x18-17012r5">5<!--tex4ht:ref: tab:p_coarse_1 --></a> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-9-4"
class="td11"><!--l. 528--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">ILU</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-9-5"
class="td11"><!--l. 528--><p class="noindent" >Solver for the diagonal blocks of the coarsest
matrix preconditioner, in case the block Jacobi
solver is chosen
as <span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_KPREC</span><span
class="cmtt-10x-x-109">&#8217;</span>: ILU(<span
class="cmmi-10x-x-109">p</span>), ILU(<span
class="cmmi-10x-x-109">p,t</span>), MILU(<span
class="cmmi-10x-x-109">p</span>),
LU from MUMPS, SuperLU or UMFPACK
(plus triangular solve), Approximate Inverses
INVK(<span
class="cmmi-10x-x-109">p,q</span>), INVT(<span
class="cmmi-10x-x-109">p</span><sub><span
class="cmr-8">1</span></sub><span
class="cmmi-10x-x-109">,p</span>2<span
class="cmmi-10x-x-109">,t</span><sub><span
class="cmr-8">1</span></sub><span
class="cmmi-10x-x-109">,t</span><sub><span
class="cmr-8">2</span></sub>) and AINV(<span
class="cmmi-10x-x-109">t</span>);
The same caveat from Table&#x00A0;<a
href="#x18-17012r5">5<!--tex4ht:ref: tab:p_coarse_1 --></a> applies here. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-10-"><td style="white-space:wrap; text-align:left;" id="TBL-8-10-1"
class="td11"><!--l. 535--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_GLOBAL</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-10-2"
class="td11"><span class="lstinline"></span><!--l. 535--><p class="noindent" ><span
class="cmtt-10x-x-109">character</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">len</span><span
class="cmtt-10x-x-109">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-10-3"
class="td11"><!--l. 535--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">TRUE</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FALSE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-10-4"
class="td11"><!--l. 535--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FALSE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-10-5"
class="td11"><!--l. 535--><p class="noindent" >Choose between a global Krylov solver, all
unknowns on a single node, or a distributed
one. The default choice is the distributed
solver. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-11-"><td style="white-space:wrap; text-align:left;" id="TBL-8-11-1"
class="td11"><!--l. 536--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_EPS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-11-2"
class="td11"><span class="lstinline"></span><!--l. 536--><p class="noindent" ><span
class="cmtt-10x-x-109">real</span><span
class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">kind_parameter</span><span
class="cmtt-10x-x-109">)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-11-3"
class="td11"><!--l. 536--><p class="noindent" >Real <span
class="cmmi-10x-x-109">&#x003C; </span>1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-11-4"
class="td11"><!--l. 536--><p class="noindent" >10<sup><span
class="cmsy-8">-</span><span
class="cmr-8">6</span> </sup> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-11-5"
class="td11"><!--l. 536--><p class="noindent" >The stopping tolerance. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-12-"><td style="white-space:wrap; text-align:left;" id="TBL-8-12-1"
class="td11"><!--l. 537--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_IRST</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-12-2"
class="td11"><span class="lstinline"></span><!--l. 537--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-12-3"
class="td11"><!--l. 537--><p class="noindent" >Integer
<!--l. 537--><p class="noindent" ><span
class="cmsy-10x-x-109">&#x2265; </span>1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-12-4"
class="td11"><!--l. 537--><p class="noindent" >30 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-12-5"
class="td11"><!--l. 537--><p class="noindent" >An integer specifying the restart parameter.
This is employed for the <span
class="cmtt-10x-x-109">BiCGSTABL </span>or <span
class="cmtt-10x-x-109">RGMRES</span>
methods, otherwise it is ignored. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-13-"><td style="white-space:wrap; text-align:left;" id="TBL-8-13-1"
class="td11"><!--l. 538--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_ISTOPC</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-13-2"
class="td11"><span class="lstinline"></span><!--l. 538--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-13-3"
class="td11"><!--l. 538--><p class="noindent" >Integers
1,2,3 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-13-4"
class="td11"><!--l. 538--><p class="noindent" >2 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-13-5"
class="td11"><!--l. 538--><p class="noindent" >If <span
class="cmtt-10x-x-109">1 </span>then the method uses the normwise
backward error in the infinity norm; if <span
class="cmtt-10x-x-109">2</span>, the
it uses the relative residual in the 2-norm; if <span
class="cmtt-10x-x-109">3</span>
the relative residual reduction in the 2-norm is
used instead; refer to the PSBLAS&#x00A0;<span class="cite">[<a
href="userhtmlli5.html#XPSBLASGUIDE">20</a>]</span> guide
for the details. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-14-"><td style="white-space:wrap; text-align:left;" id="TBL-8-14-1"
class="td11"><!--l. 540--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_ITMAX</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-14-2"
class="td11"><span class="lstinline"></span><!--l. 540--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-14-3"
class="td11"><!--l. 540--><p class="noindent" >Integer
<!--l. 540--><p class="noindent" ><span
class="cmsy-10x-x-109">&#x2265; </span>1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-14-4"
class="td11"><!--l. 540--><p class="noindent" >40 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-14-5"
class="td11"><!--l. 540--><p class="noindent" >The maximum number of iterations to
perform. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-15-"><td style="white-space:wrap; text-align:left;" id="TBL-8-15-1"
class="td11"><!--l. 541--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_ITRACE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-15-2"
class="td11"><span class="lstinline"></span><!--l. 541--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-15-3"
class="td11"><!--l. 541--><p class="noindent" >Integer
<!--l. 541--><p class="noindent" ><span
class="cmsy-10x-x-109">&#x2265; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-15-4"
class="td11"><!--l. 541--><p class="noindent" >-1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-15-5"
class="td11"><!--l. 541--><p class="noindent" >If <span
class="cmmi-10x-x-109">&#x003E; </span>0 print out
an informational message about convergence
every <span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_ITRACE</span><span
class="cmtt-10x-x-109">&#8217;</span> iterations. If = 0 print a
message in case of convergence failure. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-16-"><td style="white-space:wrap; text-align:left;" id="TBL-8-16-1"
class="td11"><!--l. 545--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">KRM_FILLIN</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-8-16-2"
class="td11"><span class="lstinline"></span><!--l. 545--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-16-3"
class="td11"><!--l. 545--><p class="noindent" >Integer
<!--l. 545--><p class="noindent" ><span
class="cmsy-10x-x-109">&#x2265; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-16-4"
class="td11"><!--l. 546--><p class="noindent" >0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-16-5"
class="td11"><!--l. 547--><p class="noindent" >Fill-in level <span
class="cmmi-10x-x-109">p </span>of the ILU factorizations and
first fill-in for the approximate inverses. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-8-17-"><td style="white-space:wrap; text-align:left;" id="TBL-8-17-1"
class="td11"> </td></tr></table>
</div></div>
<br /> <div class="caption"
><span class="id">Table&#x00A0;6: </span><span
class="content">Additional parameters defining the solver at the coarsest level.</span></div><!--tex4ht:label?: x18-17013r6 -->
</div><hr class="endfloat" />
</div>
<div class="table">
<!--l. 556--><p class="indent" > <a
id="x18-17014r7"></a><hr class="float"><div class="float"
>
<div class="center"
>
<!--l. 556--><p class="noindent" >
<div class="tabular"> <table id="TBL-9" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-9-1g"><col
id="TBL-9-1"></colgroup><colgroup id="TBL-9-2g"><col
id="TBL-9-2"></colgroup><colgroup id="TBL-9-3g"><col
id="TBL-9-3"></colgroup><colgroup id="TBL-9-4g"><col
id="TBL-9-4"></colgroup><colgroup id="TBL-9-5g"><col
id="TBL-9-5"></colgroup><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-9-1-"><td style="white-space:wrap; text-align:left;" id="TBL-9-1-1"
class="td11"><!--l. 560--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">what</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-9-1-2"
class="td11"><span
class="cmcsc-10"><span
class="small-caps">d</span><span
class="small-caps">a</span><span
class="small-caps">t</span><span
class="small-caps">a</span> <span
class="small-caps">t</span><span
class="small-caps">y</span><span
class="small-caps">p</span><span
class="small-caps">e</span> </span></td><td style="white-space:wrap; text-align:left;" id="TBL-9-1-3"
class="td11"><!--l. 560--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">val</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-1-4"
class="td11"><!--l. 560--><p class="noindent" ><span
class="cmcsc-10"><span
class="small-caps">d</span><span
class="small-caps">e</span><span
class="small-caps">f</span><span
class="small-caps">a</span><span
class="small-caps">u</span><span
class="small-caps">l</span><span
class="small-caps">t</span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-1-5"
class="td11"><!--l. 561--><p class="noindent" ><span
class="cmcsc-10"><span
class="small-caps">c</span><span
class="small-caps">o</span><span
class="small-caps">m</span><span
class="small-caps">m</span><span
class="small-caps">e</span><span
class="small-caps">n</span><span
class="small-caps">t</span><span
class="small-caps">s</span></span> </td></tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-9-2-"><td style="white-space:wrap; text-align:left;" id="TBL-9-2-1"
class="td11"><!--l. 563--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SMOOTHER_TYPE</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-9-2-2"
class="td11"><span class="lstinline"></span><!--l. 563--><p class="noindent" ><span
class="cmtt-10">character</span><span
class="cmtt-10">(</span><span
class="cmtt-10">len</span><span
class="cmtt-10">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-2-3"
class="td11"><!--l. 564--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">JACOBI</span><span
class="cmtt-10">&#8217;</span>
<!--l. 564--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">GS</span><span
class="cmtt-10">&#8217;</span>
<!--l. 564--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">BGS</span><span
class="cmtt-10">&#8217;</span>
<!--l. 564--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">BJAC</span><span
class="cmtt-10">&#8217;</span>
<!--l. 565--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">AS</span><span
class="cmtt-10">&#8217;</span>
<!--l. 565--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">L1</span><span
class="cmtt-10">-</span><span
class="cmtt-10">JACOBI</span><span
class="cmtt-10">&#8217;</span>
<!--l. 565--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">L1</span><span
class="cmtt-10">-</span><span
class="cmtt-10">BJAC</span><span
class="cmtt-10">&#8217;</span>
<!--l. 565--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">L1</span><span
class="cmtt-10">-</span><span
class="cmtt-10">FBGS</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-2-4"
class="td11"><!--l. 566--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">FBGS</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-2-5"
class="td11"><!--l. 567--><p class="noindent" ><span
class="cmr-10">Type of smoother used in the multilevel</span>
<span
class="cmr-10">preconditioner: point-Jacobi, hybrid</span>
<span
class="cmr-10">(forward) Gauss-Seidel, hybrid backward</span>
<span
class="cmr-10">Gauss-Seidel, block-Jacobi, </span><span
class="cmmi-10">&#x2113;</span><sub><span
class="cmr-7">1</span></sub><span
class="cmr-10">-Jacobi,</span>
<span
class="cmmi-10">&#x2113;</span><sub><span
class="cmr-7">1</span></sub><span
class="cmr-10">&#8211;hybrid (forward) Gauss-Seidel,</span>
<span
class="cmmi-10">&#x2113;</span><sub><span
class="cmr-7">1</span></sub><span
class="cmr-10">-point-Jacobi and Additive Schwarz.</span>
<!--l. 571--><p class="noindent" ><span
class="cmr-10">It is ignored by one-level preconditioners.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-9-3-"><td style="white-space:wrap; text-align:left;" id="TBL-9-3-1"
class="td11"><!--l. 572--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUB_SOLVE</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-9-3-2"
class="td11"><span class="lstinline"></span><!--l. 572--><p class="noindent" ><span
class="cmtt-10">character</span><span
class="cmtt-10">(</span><span
class="cmtt-10">len</span><span
class="cmtt-10">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-3-3"
class="td11"><!--l. 573--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">JACOBI</span><span
class="cmtt-10">&#8217;</span>
<span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">GS</span><span
class="cmtt-10">&#8217;</span>
<!--l. 574--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">BGS</span><span
class="cmtt-10">&#8217;</span>
<!--l. 574--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">ILU</span><span
class="cmtt-10">&#8217;</span>
<!--l. 575--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">ILUT</span><span
class="cmtt-10">&#8217;</span>
<!--l. 575--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">MILU</span><span
class="cmtt-10">&#8217;</span>
<!--l. 576--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">MUMPS</span><span
class="cmtt-10">&#8217;</span>
<!--l. 577--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SLU</span><span
class="cmtt-10">&#8217;</span>
<!--l. 577--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">UMF</span><span
class="cmtt-10">&#8217;</span>
<!--l. 578--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">INVT</span><span
class="cmtt-10">&#8217;</span>
<!--l. 578--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">INVK</span><span
class="cmtt-10">&#8217;</span>
<!--l. 578--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">AINV</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-3-4"
class="td11"><!--l. 579--><p class="noindent" ><span
class="cmtt-10">GS </span><span
class="cmr-10">and </span><span
class="cmtt-10">BGS </span><span
class="cmr-10">for pre-</span>
<span
class="cmr-10">and post-smoothers of</span>
<span
class="cmr-10">multilevel</span>
<span
class="cmr-10">preconditioners,</span>
<span
class="cmr-10">respectively</span>
<!--l. 581--><p class="noindent" ><span
class="cmtt-10">ILU </span><span
class="cmr-10">for block-Jacobi</span>
<span
class="cmr-10">and Additive Schwarz</span>
<span
class="cmr-10">one-level</span>
<span
class="cmr-10">preconditioners</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-3-5"
class="td11"><!--l. 583--><p class="noindent" ><span
class="cmr-10">The local solver to be used with the</span>
<span
class="cmr-10">smoother or one-level preconditioner (see</span>
<span
class="cmr-10">Remark</span><span
class="cmr-10">&#x00A0;2, page</span><span
class="cmr-10">&#x00A0;24): point-Jacobi, hybrid</span>
<span
class="cmr-10">(forward) Gauss-Seidel, hybrid backward</span>
<span
class="cmr-10">Gauss-Seidel, ILU(</span><span
class="cmmi-10">p</span><span
class="cmr-10">), ILU(</span><span
class="cmmi-10">p,t</span><span
class="cmr-10">), MILU(</span><span
class="cmmi-10">p</span><span
class="cmr-10">),</span>
<span
class="cmr-10">LU from MUMPS,</span>
<span
class="cmr-10">SuperLU or UMFPACK (plus triangular</span>
<span
class="cmr-10">solve), Approximate Inverses INVK(</span><span
class="cmmi-10">p,q</span><span
class="cmr-10">),</span>
<span
class="cmr-10">INVT(</span><span
class="cmmi-10">p</span><sub><span
class="cmr-7">1</span></sub><span
class="cmmi-10">,p</span><span
class="cmr-10">2</span><span
class="cmmi-10">,t</span><sub><span
class="cmr-7">1</span></sub><span
class="cmmi-10">,t</span><sub><span
class="cmr-7">2</span></sub><span
class="cmr-10">) and AINV(</span><span
class="cmmi-10">t</span><span
class="cmr-10">); note</span>
<span
class="cmr-10">that approximate inverses are specifically</span>
<span
class="cmr-10">suited for GPUs since they do not employ</span>
<span
class="cmr-10">triangular system solve kernels, see</span><span
class="cmr-10">&#x00A0;</span><span class="cite"><span
class="cmr-10">[</span><a
href="userhtmlli5.html#XBERTACCINIFILIPPONE"><span
class="cmr-10">3</span></a><span
class="cmr-10">]</span></span><span
class="cmr-10">. See</span>
<span
class="cmr-10">Note for details on hybrid Gauss-Seidel.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-9-4-"><td style="white-space:wrap; text-align:left;" id="TBL-9-4-1"
class="td11"><!--l. 597--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SMOOTHER_SWEEPS</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-9-4-2"
class="td11"><span class="lstinline"></span><!--l. 597--><p class="noindent" ><span
class="cmtt-10">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-4-3"
class="td11"><!--l. 598--><p class="noindent" ><span
class="cmr-10">Any integer</span>
<!--l. 598--><p class="noindent" ><span
class="cmr-10">number</span><span
class="cmr-10">&#x00A0;</span><span
class="cmsy-10">&#x2265; </span><span
class="cmr-10">0</span></td><td style="white-space:wrap; text-align:left;" id="TBL-9-4-4"
class="td11"><!--l. 599--><p class="noindent" ><span
class="cmr-10">1</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-4-5"
class="td11"><!--l. 600--><p class="noindent" ><span
class="cmr-10">Number of sweeps of the smoother or</span>
<span
class="cmr-10">one-level preconditioner. In the multilevel</span>
<span
class="cmr-10">case, no pre-smother or post-smoother</span>
<span
class="cmr-10">is used if this parameter is set to 0</span>
<span
class="cmr-10">together with </span><span class="lstinline"></span><span
class="cmtt-10">pos</span><span
class="cmtt-10">=</span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">PRE</span><span
class="cmtt-10">&#8217;</span> <span
class="cmr-10">or </span><span class="lstinline"></span><span
class="cmtt-10">pos</span><span
class="cmtt-10">=</span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">POST</span><span
class="cmtt-10">&#8217;</span><span
class="cmr-10">,</span>
<span
class="cmr-10">respectively.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-9-5-"><td style="white-space:wrap; text-align:left;" id="TBL-9-5-1"
class="td11"><!--l. 605--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUB_OVR</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-9-5-2"
class="td11"><span class="lstinline"></span><!--l. 605--><p class="noindent" ><span
class="cmtt-10">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-5-3"
class="td11"><!--l. 606--><p class="noindent" ><span
class="cmr-10">Any integer</span>
<!--l. 606--><p class="noindent" ><span
class="cmr-10">number</span><span
class="cmr-10">&#x00A0;</span><span
class="cmsy-10">&#x2265; </span><span
class="cmr-10">0</span></td><td style="white-space:wrap; text-align:left;" id="TBL-9-5-4"
class="td11"><!--l. 607--><p class="noindent" ><span
class="cmr-10">1</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-9-5-5"
class="td11"><!--l. 608--><p class="noindent" ><span
class="cmr-10">Number of overlap layers, for Additive</span>
<span
class="cmr-10">Schwarz only.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-9-6-"><td style="white-space:wrap; text-align:left;" id="TBL-9-6-1"
class="td11"> </td></tr></table></div></div>
<br /> <div class="caption"
><span class="id">Table&#x00A0;7: </span><span
class="content">Parameters defining the smoother or the details of the one-level
preconditioner. </span></div><!--tex4ht:label?: x18-17014r7 -->
</div><hr class="endfloat" />
</div>
<div class="table">
<!--l. 617--><p class="indent" > <a
id="x18-17015r8"></a><hr class="float"><div class="float"
>
<div class="center"
>
<!--l. 617--><p class="noindent" >
<div class="tabular"> <table id="TBL-10" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-10-1g"><col
id="TBL-10-1"></colgroup><colgroup id="TBL-10-2g"><col
id="TBL-10-2"></colgroup><colgroup id="TBL-10-3g"><col
id="TBL-10-3"></colgroup><colgroup id="TBL-10-4g"><col
id="TBL-10-4"></colgroup><colgroup id="TBL-10-5g"><col
id="TBL-10-5"></colgroup><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-1-"><td style="white-space:wrap; text-align:left;" id="TBL-10-1-1"
class="td11"><!--l. 621--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">what</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-10-1-2"
class="td11"><span
class="cmcsc-10"><span
class="small-caps">d</span><span
class="small-caps">a</span><span
class="small-caps">t</span><span
class="small-caps">a</span> <span
class="small-caps">t</span><span
class="small-caps">y</span><span
class="small-caps">p</span><span
class="small-caps">e</span> </span></td><td style="white-space:wrap; text-align:left;" id="TBL-10-1-3"
class="td11"><!--l. 621--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">val</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-1-4"
class="td11"><!--l. 621--><p class="noindent" ><span
class="cmcsc-10"><span
class="small-caps">d</span><span
class="small-caps">e</span><span
class="small-caps">f</span><span
class="small-caps">a</span><span
class="small-caps">u</span><span
class="small-caps">l</span><span
class="small-caps">t</span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-1-5"
class="td11"><!--l. 622--><p class="noindent" ><span
class="cmcsc-10"><span
class="small-caps">c</span><span
class="small-caps">o</span><span
class="small-caps">m</span><span
class="small-caps">m</span><span
class="small-caps">e</span><span
class="small-caps">n</span><span
class="small-caps">t</span><span
class="small-caps">s</span></span> </td></tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-2-"><td style="white-space:wrap; text-align:left;" id="TBL-10-2-1"
class="td11"><!--l. 623--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUB_RESTR</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-10-2-2"
class="td11"><span class="lstinline"></span><!--l. 623--><p class="noindent" ><span
class="cmtt-10">character</span><span
class="cmtt-10">(</span><span
class="cmtt-10">len</span><span
class="cmtt-10">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-2-3"
class="td11"><!--l. 624--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">HALO</span><span
class="cmtt-10">&#8217;</span>
<!--l. 624--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">NONE</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-2-4"
class="td11"><!--l. 625--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">HALO</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-2-5"
class="td11"><!--l. 626--><p class="noindent" ><span
class="cmr-10">Type of restriction operator, for Additive</span>
<span
class="cmr-10">Schwarz only: </span><span
class="cmtt-10">HALO </span><span
class="cmr-10">for taking into account</span>
<span
class="cmr-10">the overlap, </span><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">NONE</span><span
class="cmtt-10">&#8217;</span> <span
class="cmr-10">for neglecting it.</span>
<!--l. 629--><p class="noindent" ><span
class="cmr-10">Note that </span><span
class="cmtt-10">HALO </span><span
class="cmr-10">must be chosen for the</span>
<span
class="cmr-10">classical Addditive Schwarz smoother and</span>
<span
class="cmr-10">its RAS variant.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-3-"><td style="white-space:wrap; text-align:left;" id="TBL-10-3-1"
class="td11"><!--l. 631--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUB_PROL</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-10-3-2"
class="td11"><span class="lstinline"></span><!--l. 631--><p class="noindent" ><span
class="cmtt-10">character</span><span
class="cmtt-10">(</span><span
class="cmtt-10">len</span><span
class="cmtt-10">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-3-3"
class="td11"><!--l. 632--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUM</span><span
class="cmtt-10">&#8217;</span>
<!--l. 632--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">NONE</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-3-4"
class="td11"><!--l. 633--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">NONE</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-3-5"
class="td11"><!--l. 634--><p class="noindent" ><span
class="cmr-10">Type of prolongation operator, for Additive</span>
<span
class="cmr-10">Schwarz only: </span><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUM</span><span
class="cmtt-10">&#8217;</span> <span
class="cmr-10">for adding the</span>
<span
class="cmr-10">contributions from the overlap, </span><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">NONE</span><span
class="cmtt-10">&#8217;</span> <span
class="cmr-10">for</span>
<span
class="cmr-10">neglecting them.</span>
<!--l. 637--><p class="noindent" ><span
class="cmr-10">Note that </span><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUM</span><span
class="cmtt-10">&#8217;</span> <span
class="cmr-10">must be chosen for the</span>
<span
class="cmr-10">classical Additive Schwarz smoother, and</span>
<span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">NONE</span><span
class="cmtt-10">&#8217;</span> <span
class="cmr-10">for its RAS variant.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-4-"><td style="white-space:wrap; text-align:left;" id="TBL-10-4-1"
class="td11"><!--l. 639--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUB_FILLIN</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-10-4-2"
class="td11"><span class="lstinline"></span><!--l. 639--><p class="noindent" ><span
class="cmtt-10">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-4-3"
class="td11"><!--l. 640--><p class="noindent" ><span
class="cmr-10">Any integer</span>
<!--l. 640--><p class="noindent" ><span
class="cmr-10">number</span><span
class="cmr-10">&#x00A0;</span><span
class="cmsy-10">&#x2265; </span><span
class="cmr-10">0</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-4-4"
class="td11"><!--l. 641--><p class="noindent" ><span
class="cmr-10">0</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-4-5"
class="td11"><!--l. 642--><p class="noindent" ><span
class="cmr-10">Fill-in level </span><span
class="cmmi-10">p </span><span
class="cmr-10">of the incomplete LU</span>
<span
class="cmr-10">factorizations.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-5-"><td style="white-space:wrap; text-align:left;" id="TBL-10-5-1"
class="td11"><!--l. 643--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">SUB_ILUTHRS</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-10-5-2"
class="td11"><span class="lstinline"></span><!--l. 643--><p class="noindent" ><span
class="cmtt-10">real</span><span
class="cmtt-10">(</span><span
class="cmtt-10">kind_parameter</span><span
class="cmtt-10">)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-5-3"
class="td11"><!--l. 644--><p class="noindent" ><span
class="cmr-10">Any real</span>
<span
class="cmr-10">number</span><span
class="cmr-10">&#x00A0;</span><span
class="cmsy-10">&#x2265; </span><span
class="cmr-10">0</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-5-4"
class="td11"><!--l. 645--><p class="noindent" ><span
class="cmr-10">0</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-5-5"
class="td11"><!--l. 646--><p class="noindent" ><span
class="cmr-10">Drop tolerance </span><span
class="cmmi-10">t </span><span
class="cmr-10">in the ILU(</span><span
class="cmmi-10">p,t</span><span
class="cmr-10">)</span>
<span
class="cmr-10">factorization.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-6-"><td style="white-space:wrap; text-align:left;" id="TBL-10-6-1"
class="td11"><!--l. 647--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">MUMPS_LOC_GLOB</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-10-6-2"
class="td11"><span class="lstinline"></span><!--l. 647--><p class="noindent" ><span
class="cmtt-10">character</span><span
class="cmtt-10">(</span><span
class="cmtt-10">len</span><span
class="cmtt-10">=*)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-6-3"
class="td11"><!--l. 648--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">LOCAL_SOLVER</span><span
class="cmtt-10">&#8217;</span>
<!--l. 648--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">GLOBAL_SOLVER</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-6-4"
class="td11"><!--l. 649--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">GLOBAL_SOLVER</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-6-5"
class="td11"><!--l. 650--><p class="noindent" ><span
class="cmr-10">Whether MUMPS should be used as a</span>
<span
class="cmr-10">distributed solver, or as a serial solver acting</span>
<span
class="cmr-10">only on the part of the matrix local to each</span>
<span
class="cmr-10">process.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-7-"><td style="white-space:wrap; text-align:left;" id="TBL-10-7-1"
class="td11"><!--l. 654--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">MUMPS_IPAR_ENTRY</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-10-7-2"
class="td11"><span class="lstinline"></span><!--l. 654--><p class="noindent" ><span
class="cmtt-10">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-7-3"
class="td11"><!--l. 655--><p class="noindent" ><span
class="cmr-10">Any integer</span>
<span
class="cmr-10">number</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-7-4"
class="td11"><!--l. 656--><p class="noindent" ><span
class="cmr-10">0</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-7-5"
class="td11"><!--l. 657--><p class="noindent" ><span
class="cmr-10">Set an entry in the MUMPS integer control</span>
<span
class="cmr-10">array, as chosen via the </span><span class="lstinline"></span><span
class="cmtt-10">idx</span> <span
class="cmr-10">optional</span>
<span
class="cmr-10">argument.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-8-"><td style="white-space:wrap; text-align:left;" id="TBL-10-8-1"
class="td11"><!--l. 659--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10">&#8217;</span><span
class="cmtt-10">MUMPS_RPAR_ENTRY</span><span
class="cmtt-10">&#8217;</span> </td><td style="white-space:nowrap; text-align:left;" id="TBL-10-8-2"
class="td11"><span class="lstinline"></span><!--l. 659--><p class="noindent" ><span
class="cmtt-10">real</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-8-3"
class="td11"><!--l. 660--><p class="noindent" ><span
class="cmr-10">Any real number</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-8-4"
class="td11"><!--l. 661--><p class="noindent" ><span
class="cmr-10">0</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-10-8-5"
class="td11"><!--l. 662--><p class="noindent" ><span
class="cmr-10">Set an entry in the MUMPS real control</span>
<span
class="cmr-10">array, as chosen via the </span><span class="lstinline"></span><span
class="cmtt-10">idx</span> <span
class="cmr-10">optional</span>
<span
class="cmr-10">argument.</span> </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-10-9-"><td style="white-space:wrap; text-align:left;" id="TBL-10-9-1"
class="td11"> </td></tr></table></div></div>
<br /> <div class="caption"
><span class="id">Table&#x00A0;8: </span><span
class="content">Parameters defining the smoother or the details of the one-level preconditioner
(continued).</span></div><!--tex4ht:label?: x18-17015r8 -->
</div><hr class="endfloat" />
</div>
<!--l. 674--><div class="crosslinks"><p class="noindent"><span
class="cmr-12">[</span><a
href="userhtmlsu9.html" ><span
class="cmr-12">next</span></a><span
class="cmr-12">] [</span><a
href="userhtmlsu7.html" ><span
class="cmr-12">prev</span></a><span
class="cmr-12">] [</span><a
href="userhtmlsu7.html#tailuserhtmlsu7.html" ><span
class="cmr-12">prev-tail</span></a><span
class="cmr-12">] [</span><a
href="userhtmlsu8.html" ><span
class="cmr-12">front</span></a><span
class="cmr-12">] [</span><a
href="userhtmlse5.html#userhtmlsu8.html" ><span
class="cmr-12">up</span></a><span
class="cmr-12">] </span></p></div>
<!--l. 674--><p class="indent" > <a
id="tailuserhtmlsu8.html"></a>
</body></html>