You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
486 lines
16 KiB
Fortran
486 lines
16 KiB
Fortran
!!$
|
|
!!$
|
|
!!$ MLD2P4 version 1.1
|
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
!!$ based on PSBLAS (Parallel Sparse BLAS version 2.3.1)
|
|
!!$
|
|
!!$ (C) Copyright 2008,2009
|
|
!!$
|
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
|
!!$ Alfredo Buttari University of Rome Tor Vergata
|
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
|
!!$ Daniela di Serafino Second University of Naples
|
|
!!$
|
|
!!$ Redistribution and use in source and binary forms, with or without
|
|
!!$ modification, are permitted provided that the following conditions
|
|
!!$ are met:
|
|
!!$ 1. Redistributions of source code must retain the above copyright
|
|
!!$ notice, this list of conditions and the following disclaimer.
|
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
|
!!$ documentation and/or other materials provided with the distribution.
|
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
|
!!$ not be used to endorse or promote products derived from this
|
|
!!$ software without specific written permission.
|
|
!!$
|
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
|
!!$
|
|
!!$
|
|
! File: mld_cfact_bld.f90
|
|
!
|
|
! Subroutine: mld_cfact_bld
|
|
! Version: complex
|
|
!
|
|
! This routine computes an LU or incomplete LU (ILU) factorization of the
|
|
! diagonal blocks of a distributed matrix, according to the value of
|
|
! p%iprcparm(iprcparm(sub_solve_), set by the user through mld_cprecinit
|
|
! or mld_cprecset.
|
|
! It may also compute an LU factorization of a distributed matrix, or split
|
|
! a distributed matrix into its block-diagonal and off block-diagonal parts,
|
|
! for the future application of multiple block-Jacobi sweeps.
|
|
!
|
|
! This routine is used by mld_as_bld, to build a 'base' block-Jacobi or
|
|
! Additive Schwarz (AS) preconditioner at any level of a multilevel preconditioner,
|
|
! or a block-Jacobi or LU or ILU solver at the coarsest level of a multilevel
|
|
! preconditioner. For the AS preconditioners, the diagonal blocks to be factorized
|
|
! are stored into the sparse matrix data structures a and blck, and blck contains
|
|
! the remote rows needed to build the extended local matrix as required by the
|
|
! AS preconditioner.
|
|
!
|
|
! More precisely, the routine performs one of the following tasks:
|
|
!
|
|
! 1. LU or ILU factorization of the diagonal blocks of the distributed matrix
|
|
! for the construction of block-Jacobi or AS preconditioners (allowed at
|
|
! any level of a multilevel preconditioner);
|
|
!
|
|
! 2. setup of block-Jacobi sweeps to compute an approximate solution of a
|
|
! linear system
|
|
! A*Y = X,
|
|
! distributed among the processes (allowed only at the coarsest level);
|
|
!
|
|
! 3. LU factorization of the matrix of a linear system
|
|
! A*Y = X,
|
|
! distributed among the processes (allowed only at the coarsest level);
|
|
!
|
|
! 4. LU or incomplete LU factorization of the matrix of a linear system
|
|
! A*Y = X,
|
|
! replicated on the processes (allowed only at the coarsest level).
|
|
!
|
|
! The following factorizations are available:
|
|
! - ILU(k), i.e. ILU factorization with fill-in level k;
|
|
! - MILU(k), i.e. modified ILU factorization with fill-in level k;
|
|
! - ILU(k,t), i.e. ILU with threshold (i.e. drop tolerance) t and k additional
|
|
! entries in each row of the L and U factors with respect to the initial
|
|
! sparsity pattern;
|
|
! - serial LU implemented in SuperLU version 3.0;
|
|
! - serial LU implemented in UMFPACK version 4.4;
|
|
! - distributed LU implemented in SuperLU_DIST version 2.0.
|
|
!
|
|
!
|
|
! Arguments:
|
|
! a - type(psb_cspmat_type), input.
|
|
! The sparse matrix structure containing the local part of the
|
|
! distributed matrix.
|
|
! p - type(mld_cbaseprec_type), input/output.
|
|
! The 'base preconditioner' data structure containing the local
|
|
! part of the preconditioner or solver at the current level.
|
|
!
|
|
! info - integer, output.
|
|
! Error code.
|
|
! upd - character, input.
|
|
! If upd='F' then the preconditioner is built from scratch;
|
|
! if upd=T' then the matrix to be preconditioned has the same
|
|
! sparsity pattern of a matrix that has been previously
|
|
! preconditioned, hence some information is reused in building
|
|
! the new preconditioner.
|
|
! blck - type(psb_cspmat_type), input, optional.
|
|
! The sparse matrix structure containing the remote rows of the
|
|
! distributed matrix, that have been retrieved by mld_as_bld
|
|
! to build an Additive Schwarz base preconditioner with overlap
|
|
! greater than 0. If the overlap is 0 blck is empty.
|
|
!
|
|
subroutine mld_cfact_bld(a,p,upd,info,blck)
|
|
|
|
use psb_sparse_mod
|
|
use mld_inner_mod, mld_protect_name => mld_cfact_bld
|
|
|
|
implicit none
|
|
|
|
! Arguments
|
|
type(psb_cspmat_type), intent(in), target :: a
|
|
type(mld_cbaseprec_type), intent(inout) :: p
|
|
integer, intent(out) :: info
|
|
character, intent(in) :: upd
|
|
type(psb_cspmat_type), intent(in), target, optional :: blck
|
|
|
|
! Local Variables
|
|
type(psb_cspmat_type), pointer :: blck_
|
|
type(psb_cspmat_type) :: atmp
|
|
integer :: ictxt,np,me,err_act
|
|
integer :: debug_level, debug_unit
|
|
integer :: k, m, int_err(5), n_row, nrow_a, n_col
|
|
character :: trans, unitd
|
|
character(len=20) :: name, ch_err
|
|
|
|
if(psb_get_errstatus().ne.0) return
|
|
info=0
|
|
name='mld_cfact_bld'
|
|
call psb_erractionsave(err_act)
|
|
debug_unit = psb_get_debug_unit()
|
|
debug_level = psb_get_debug_level()
|
|
ictxt = psb_cd_get_context(p%desc_data)
|
|
call psb_info(ictxt, me, np)
|
|
|
|
m = a%m
|
|
if (m < 0) then
|
|
info = 10
|
|
int_err(1) = 1
|
|
int_err(2) = m
|
|
call psb_errpush(info,name,i_err=int_err)
|
|
goto 9999
|
|
endif
|
|
trans = 'N'
|
|
unitd = 'U'
|
|
|
|
if (present(blck)) then
|
|
blck_ => blck
|
|
else
|
|
allocate(blck_,stat=info)
|
|
if (info ==0) call psb_sp_all(0,0,blck_,1,info)
|
|
if(info /= 0) then
|
|
info=4010
|
|
ch_err='psb_sp_all'
|
|
call psb_errpush(info,name,a_err=ch_err)
|
|
goto 9999
|
|
end if
|
|
blck_%fida = 'COO'
|
|
blck_%infoa(psb_nnz_) = 0
|
|
end if
|
|
call psb_nullify_sp(atmp)
|
|
|
|
!
|
|
! Treat separately the case the local matrix has to be reordered
|
|
! and the case this is not required.
|
|
!
|
|
select case(p%iprcparm(mld_sub_ren_))
|
|
|
|
!
|
|
! A reordering of the local matrix is required.
|
|
!
|
|
case (1:)
|
|
|
|
!
|
|
! Reorder the rows and the columns of the local extended matrix,
|
|
! according to the value of p%iprcparm(sub_ren_). The reordered
|
|
! matrix is stored into atmp, using the COO format.
|
|
!
|
|
call mld_sp_renum(a,blck_,p,atmp,info)
|
|
if (info/=0) then
|
|
call psb_errpush(4010,name,a_err='mld_sp_renum')
|
|
goto 9999
|
|
end if
|
|
|
|
!
|
|
! Clip into p%av(ap_nd_) the off block-diagonal part of the local
|
|
! matrix. The clipped matrix is then stored in CSR format.
|
|
!
|
|
if (p%iprcparm(mld_smoother_sweeps_) > 1) then
|
|
call psb_sp_clip(atmp,p%av(mld_ap_nd_),info,&
|
|
& jmin=atmp%m+1,rscale=.false.,cscale=.false.)
|
|
if (info == 0) call psb_spcnv(p%av(mld_ap_nd_),info,&
|
|
& afmt='csr',dupl=psb_dupl_add_)
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='psb_spcnv')
|
|
goto 9999
|
|
end if
|
|
|
|
k = psb_sp_get_nnzeros(p%av(mld_ap_nd_))
|
|
call psb_sum(ictxt,k)
|
|
|
|
if (k == 0) then
|
|
!
|
|
! If the off diagonal part is emtpy, there is no point in doing
|
|
! multiple Jacobi sweeps. This is certain to happen when running
|
|
! on a single processor.
|
|
!
|
|
p%iprcparm(mld_smoother_sweeps_) = 1
|
|
end if
|
|
end if
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),' Factoring rows ',&
|
|
& atmp%m,a%m,blck_%m,atmp%ia2(atmp%m+1)-1
|
|
|
|
!
|
|
! Compute a factorization of the diagonal block of the local matrix,
|
|
! according to the choice made by the user by setting p%iprcparm(sub_solve_)
|
|
!
|
|
select case(p%iprcparm(mld_sub_solve_))
|
|
|
|
case(mld_ilu_n_,mld_milu_n_,mld_ilu_t_)
|
|
!
|
|
! ILU(k)/MILU(k)/ILU(k,t) factorization.
|
|
!
|
|
call psb_spcnv(atmp,info,afmt='csr',dupl=psb_dupl_add_)
|
|
if (info == 0) call mld_ilu_bld(atmp,p,upd,info)
|
|
if (info/=0) then
|
|
call psb_errpush(4010,name,a_err='mld_ilu_bld')
|
|
goto 9999
|
|
end if
|
|
|
|
case(mld_slu_)
|
|
!
|
|
! LU factorization through the SuperLU package.
|
|
!
|
|
call psb_spcnv(atmp,info,afmt='csr',dupl=psb_dupl_add_)
|
|
if (info == 0) call mld_slu_bld(atmp,p%desc_data,p,info)
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='mld_slu_bld')
|
|
goto 9999
|
|
end if
|
|
|
|
case(mld_sludist_)
|
|
!
|
|
! LU factorization through the SuperLU_DIST package. This works only
|
|
! when the matrix is distributed among the processes.
|
|
! NOTE: Should have NO overlap here!!!!
|
|
!
|
|
call psb_spcnv(a,atmp,info,afmt='csr')
|
|
if (info == 0) call mld_sludist_bld(atmp,p%desc_data,p,info)
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='mld_sludist_bld')
|
|
goto 9999
|
|
end if
|
|
|
|
case(mld_umf_)
|
|
!
|
|
! LU factorization through the UMFPACK package.
|
|
!
|
|
call psb_spcnv(atmp,info,afmt='csc',dupl=psb_dupl_add_)
|
|
if (info == 0) call mld_umf_bld(atmp,p%desc_data,p,info)
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='mld_umf_bld')
|
|
goto 9999
|
|
end if
|
|
|
|
case(mld_f_none_)
|
|
!
|
|
! Error: no factorization required.
|
|
!
|
|
info=4001
|
|
call psb_errpush(info,name,a_err='Inconsistent prec mld_f_none_')
|
|
goto 9999
|
|
|
|
case default
|
|
info=4001
|
|
call psb_errpush(info,name,a_err='Unknown mld_sub_solve_')
|
|
goto 9999
|
|
end select
|
|
|
|
call psb_sp_free(atmp,info)
|
|
|
|
if (info/=0) then
|
|
call psb_errpush(4010,name,a_err='psb_sp_free')
|
|
goto 9999
|
|
end if
|
|
|
|
!
|
|
! No reordering of the local matrix is required
|
|
!
|
|
case(0)
|
|
!
|
|
! In case of multiple block-Jacobi sweeps, clip into p%av(ap_nd_)
|
|
! the off block-diagonal part of the local extended matrix. The
|
|
! clipped matrix is then stored in CSR format.
|
|
!
|
|
|
|
if (p%iprcparm(mld_smoother_sweeps_) > 1) then
|
|
n_row = psb_cd_get_local_rows(p%desc_data)
|
|
n_col = psb_cd_get_local_cols(p%desc_data)
|
|
nrow_a = a%m
|
|
! The following is known to work
|
|
! given that the output from CLIP is in COO.
|
|
call psb_sp_clip(a,p%av(mld_ap_nd_),info,&
|
|
& jmin=nrow_a+1,rscale=.false.,cscale=.false.)
|
|
if (info == 0) call psb_sp_clip(blck_,atmp,info,&
|
|
& jmin=nrow_a+1,rscale=.false.,cscale=.false.)
|
|
if (info == 0) call psb_rwextd(n_row,p%av(mld_ap_nd_),info,b=atmp)
|
|
if (info == 0) call psb_spcnv(p%av(mld_ap_nd_),info,&
|
|
& afmt='csr',dupl=psb_dupl_add_)
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='clip & psb_spcnv csr 4')
|
|
goto 9999
|
|
end if
|
|
|
|
k = psb_sp_get_nnzeros(p%av(mld_ap_nd_))
|
|
call psb_sum(ictxt,k)
|
|
|
|
if (k == 0) then
|
|
!
|
|
! If the off block-diagonal part is emtpy, there is no point in doing
|
|
! multiple Jacobi sweeps. This is certain to happen when running
|
|
! on a single processor.
|
|
!
|
|
p%iprcparm(mld_smoother_sweeps_) = 1
|
|
end if
|
|
call psb_sp_free(atmp,info)
|
|
if (info/=0) then
|
|
call psb_errpush(4010,name,a_err='psb_sp_free')
|
|
goto 9999
|
|
end if
|
|
end if
|
|
!
|
|
! Compute a factorization of the diagonal block of the local matrix,
|
|
! according to the choice made by the user by setting p%iprcparm(sub_solve_)
|
|
!
|
|
select case(p%iprcparm(mld_sub_solve_))
|
|
|
|
case(mld_ilu_n_,mld_milu_n_,mld_ilu_t_)
|
|
!
|
|
! ILU(k)/MILU(k)/ILU(k,t) factorization.
|
|
!
|
|
!
|
|
! Compute the incomplete LU factorization.
|
|
!
|
|
call mld_ilu_bld(a,p,upd,info,blck=blck_)
|
|
if (info/=0) then
|
|
call psb_errpush(4010,name,a_err='mld_ilu_bld')
|
|
goto 9999
|
|
end if
|
|
|
|
case(mld_slu_)
|
|
!
|
|
! LU factorization through the SuperLU package.
|
|
!
|
|
n_row = psb_cd_get_local_rows(p%desc_data)
|
|
n_col = psb_cd_get_local_cols(p%desc_data)
|
|
call psb_spcnv(a,atmp,info,afmt='coo')
|
|
if (info == 0) call psb_rwextd(n_row,atmp,info,b=blck_)
|
|
|
|
!
|
|
! Compute the LU factorization.
|
|
!
|
|
if (info == 0) call psb_spcnv(atmp,info,afmt='csr',dupl=psb_dupl_add_)
|
|
if (info == 0) call mld_slu_bld(atmp,p%desc_data,p,info)
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='mld_slu_bld')
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_sp_free(atmp,info)
|
|
if (info/=0) then
|
|
call psb_errpush(4010,name,a_err='psb_sp_free')
|
|
goto 9999
|
|
end if
|
|
|
|
case(mld_sludist_)
|
|
!
|
|
! LU factorization through the SuperLU_DIST package. This works only
|
|
! when the matrix is distributed among the processes.
|
|
! NOTE: Should have NO overlap here!!!!
|
|
!
|
|
call psb_spcnv(a,atmp,info,afmt='csr')
|
|
if (info == 0) call mld_sludist_bld(atmp,p%desc_data,p,info)
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='mld_sludist_bld')
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_sp_free(atmp,info)
|
|
if (info/=0) then
|
|
call psb_errpush(4010,name,a_err='psb_sp_free')
|
|
goto 9999
|
|
end if
|
|
|
|
case(mld_umf_)
|
|
!
|
|
! LU factorization through the UMFPACK package.
|
|
!
|
|
|
|
call psb_spcnv(a,atmp,info,afmt='coo')
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='psb_spcnv')
|
|
goto 9999
|
|
end if
|
|
|
|
n_row = psb_cd_get_local_rows(p%desc_data)
|
|
n_col = psb_cd_get_local_cols(p%desc_data)
|
|
call psb_rwextd(n_row,atmp,info,b=blck_)
|
|
|
|
!
|
|
! Compute the LU factorization.
|
|
!
|
|
if (info == 0) call psb_spcnv(atmp,info,afmt='csc',dupl=psb_dupl_add_)
|
|
if (info == 0) call mld_umf_bld(atmp,p%desc_data,p,info)
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),&
|
|
& ': Done mld_umf_bld ',info
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='mld_umf_bld')
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_sp_free(atmp,info)
|
|
if (info/=0) then
|
|
call psb_errpush(4010,name,a_err='psb_sp_free')
|
|
goto 9999
|
|
end if
|
|
|
|
case(mld_f_none_)
|
|
!
|
|
! Error: no factorization required.
|
|
!
|
|
info=4001
|
|
call psb_errpush(info,name,a_err='Inconsistent prec mld_f_none_')
|
|
goto 9999
|
|
|
|
case default
|
|
info=4001
|
|
call psb_errpush(info,name,a_err='Unknown mld_sub_solve_')
|
|
goto 9999
|
|
end select
|
|
|
|
case default
|
|
info=4001
|
|
call psb_errpush(info,name,a_err='Invalid renum_')
|
|
goto 9999
|
|
end select
|
|
|
|
if (.not.present(blck)) then
|
|
call psb_sp_free(blck_,info)
|
|
if (info == 0) deallocate(blck_)
|
|
if (info /= 0) then
|
|
call psb_errpush(4010,name,a_err='psb_sp_free')
|
|
goto 9999
|
|
end if
|
|
end if
|
|
|
|
if (debug_level >= psb_debug_outer_) &
|
|
& write(debug_unit,*) me,' ',trim(name),'End '
|
|
|
|
call psb_erractionrestore(err_act)
|
|
|
|
return
|
|
|
|
9999 continue
|
|
call psb_erractionrestore(err_act)
|
|
if (err_act.eq.psb_act_abort_) then
|
|
call psb_error()
|
|
return
|
|
end if
|
|
return
|
|
|
|
|
|
end subroutine mld_cfact_bld
|
|
|
|
|