You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/mlprec/impl/mld_saggrmat_smth_asb.f90

402 lines
13 KiB
Fortran

!!$
!!$
!!$ MLD2P4 version 2.0
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 3.3)
!!$
!!$ (C) Copyright 2008, 2010, 2012, 2015
!!$
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino Second University of Naples
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: mld_saggrmat_smth_asb.F90
!
! Subroutine: mld_saggrmat_smth_asb
! Version: real
!
! This routine builds a coarse-level matrix A_C from a fine-level matrix A
! by using the Galerkin approach, i.e.
!
! A_C = P_C^T A P_C,
!
! where P_C is a prolongator from the coarse level to the fine one.
!
! The prolongator P_C is built according to a smoothed aggregation algorithm,
! i.e. it is obtained by applying a damped Jacobi smoother to the piecewise
! constant interpolation operator P corresponding to the fine-to-coarse level
! mapping built by the mld_aggrmap_bld subroutine:
!
! P_C = (I - omega*D^(-1)A) * P,
!
! where D is the diagonal matrix with main diagonal equal to the main diagonal
! of A, and omega is a suitable smoothing parameter. An estimate of the spectral
! radius of D^(-1)A, to be used in the computation of omega, is provided,
! according to the value of p%parms%aggr_omega_alg, specified by the user
! through mld_sprecinit and mld_zprecset.
!
! The coarse-level matrix A_C is distributed among the parallel processes or
! replicated on each of them, according to the value of p%parms%coarse_mat,
! specified by the user through mld_sprecinit and mld_zprecset.
!
! For more details see
! M. Brezina and P. Vanek, A black-box iterative solver based on a
! two-level Schwarz method, Computing, 63 (1999), 233-263.
! P. D'Ambra, D. di Serafino and S. Filippone, On the development of
! PSBLAS-based parallel two-level Schwarz preconditioners, Appl. Num. Math.
! 57 (2007), 1181-1196.
!
! Arguments:
! a - type(psb_sspmat_type), input.
! The sparse matrix structure containing the local part of
! the fine-level matrix.
! desc_a - type(psb_desc_type), input.
! The communication descriptor of the fine-level matrix.
! p - type(mld_s_onelev_type), input/output.
! The 'one-level' data structure that will contain the local
! part of the matrix to be built as well as the information
! concerning the prolongator and its transpose.
! ilaggr - integer, dimension(:), allocatable.
! The mapping between the row indices of the coarse-level
! matrix and the row indices of the fine-level matrix.
! ilaggr(i)=j means that node i in the adjacency graph
! of the fine-level matrix is mapped onto node j in the
! adjacency graph of the coarse-level matrix.
! nlaggr - integer, dimension(:), allocatable.
! nlaggr(i) contains the aggregates held by process i.
! info - integer, output.
! Error code.
!
subroutine mld_saggrmat_smth_asb(a,desc_a,ilaggr,nlaggr,parms,ac,op_prol,op_restr,info)
use psb_base_mod
use mld_s_inner_mod, mld_protect_name => mld_saggrmat_smth_asb
implicit none
! Arguments
type(psb_sspmat_type), intent(in) :: a
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(inout) :: ilaggr(:), nlaggr(:)
type(mld_sml_parms), intent(inout) :: parms
type(psb_sspmat_type), intent(inout) :: op_prol
type(psb_sspmat_type), intent(out) :: ac,op_restr
integer(psb_ipk_), intent(out) :: info
! Local variables
integer(psb_ipk_) :: nrow, nglob, ncol, ntaggr, ip, ndx,&
& naggr, nzl,naggrm1,naggrp1, i, j, k, jd, icolF, nrw, err_act
integer(psb_ipk_) ::ictxt, np, me
character(len=20) :: name
type(psb_sspmat_type) :: am3, am4, tmp_prol
type(psb_s_coo_sparse_mat) :: tmpcoo
type(psb_s_csr_sparse_mat) :: acsr1, acsr2, acsr3, acsrf, ptilde
real(psb_spk_), allocatable :: adiag(:)
integer(psb_ipk_) :: ierr(5)
logical :: filter_mat
integer(psb_ipk_) :: debug_level, debug_unit
integer(psb_ipk_), parameter :: ncmax=16
real(psb_spk_) :: anorm, omega, tmp, dg, theta
name='mld_aggrmat_smth_asb'
if(psb_get_errstatus().ne.0) return
info=psb_success_
call psb_erractionsave(err_act)
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
ictxt = desc_a%get_context()
ictxt = desc_a%get_context()
call psb_info(ictxt, me, np)
nglob = desc_a%get_global_rows()
nrow = desc_a%get_local_rows()
ncol = desc_a%get_local_cols()
theta = parms%aggr_thresh
naggr = nlaggr(me+1)
ntaggr = sum(nlaggr)
naggrm1 = sum(nlaggr(1:me))
naggrp1 = sum(nlaggr(1:me+1))
filter_mat = (parms%aggr_filter == mld_filter_mat_)
!
! naggr: number of local aggregates
! nrow: local rows.
!
! Get the diagonal D
adiag = a%get_diag(info)
if (info == psb_success_) &
& call psb_realloc(ncol,adiag,info)
if (info == psb_success_) &
& call psb_halo(adiag,desc_a,info)
if(info /= psb_success_) then
call psb_errpush(psb_err_from_subroutine_,name,a_err='sp_getdiag')
goto 9999
end if
! 1. Allocate Ptilde in sparse matrix form
call op_prol%mv_to(tmpcoo)
call ptilde%mv_from_coo(tmpcoo,info)
if (info == psb_success_) call a%cscnv(acsr3,info,dupl=psb_dupl_add_)
if (info /= psb_success_) goto 9999
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' Initial copies done.'
if (filter_mat) then
!
! Build the filtered matrix Af from A
!
if (info == psb_success_) call acsr3%cp_to_fmt(acsrf,info)
do i=1,nrow
tmp = szero
jd = -1
do j=acsrf%irp(i),acsrf%irp(i+1)-1
if (acsrf%ja(j) == i) jd = j
if (abs(acsrf%val(j)) < theta*sqrt(abs(adiag(i)*adiag(acsrf%ja(j))))) then
tmp=tmp+acsrf%val(j)
acsrf%val(j)=szero
endif
enddo
if (jd == -1) then
write(0,*) 'Wrong input: we need the diagonal!!!!', i
else
acsrf%val(jd)=acsrf%val(jd)-tmp
end if
enddo
! Take out zeroed terms
call acsrf%clean_zeros(info)
end if
do i=1,size(adiag)
if (adiag(i) /= szero) then
adiag(i) = sone / adiag(i)
else
adiag(i) = sone
end if
end do
if (filter_mat) call acsrf%scal(adiag,info)
if (info == psb_success_) call acsr3%scal(adiag,info)
if (info /= psb_success_) goto 9999
if (parms%aggr_omega_alg == mld_eig_est_) then
if (parms%aggr_eig == mld_max_norm_) then
anorm = acsr3%spnmi()
omega = 4.d0/(3.d0*anorm)
parms%aggr_omega_val = omega
else
info = psb_err_internal_error_
call psb_errpush(info,name,a_err='invalid mld_aggr_eig_')
goto 9999
end if
else if (parms%aggr_omega_alg == mld_user_choice_) then
omega = parms%aggr_omega_val
else if (parms%aggr_omega_alg /= mld_user_choice_) then
info = psb_err_internal_error_
call psb_errpush(info,name,a_err='invalid mld_aggr_omega_alg_')
goto 9999
end if
if (filter_mat) then
!
! Build the smoothed prolongator using the filtered matrix
!
do i=1,acsrf%get_nrows()
do j=acsrf%irp(i),acsrf%irp(i+1)-1
if (acsrf%ja(j) == i) then
acsrf%val(j) = sone - omega*acsrf%val(j)
else
acsrf%val(j) = - omega*acsrf%val(j)
end if
end do
end do
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'Done gather, going for SPSPMM 1'
!
!
! acsrm1 = (I-w*D*Af)Ptilde
! Doing it this way means to consider diag(Af_i)
!
!
call psb_spspmm(acsrf,ptilde,acsr1,info)
if(info /= psb_success_) then
call psb_errpush(psb_err_from_subroutine_,name,a_err='spspmm 1')
goto 9999
end if
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'Done SPSPMM 1'
else
!
! Build the smoothed prolongator using the original matrix
!
do i=1,acsr3%get_nrows()
do j=acsr3%irp(i),acsr3%irp(i+1)-1
if (acsr3%ja(j) == i) then
acsr3%val(j) = sone - omega*acsr3%val(j)
else
acsr3%val(j) = - omega*acsr3%val(j)
end if
end do
end do
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'Done gather, going for SPSPMM 1'
!
! acsrm1 = (I-w*D*A)Ptilde
! Doing it this way means to consider diag(A_i)
!
!
call psb_spspmm(acsr3,ptilde,acsr1,info)
if(info /= psb_success_) then
call psb_errpush(psb_err_from_subroutine_,name,a_err='spspmm 1')
goto 9999
end if
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'Done SPSPMM 1'
end if
call ptilde%free()
call acsr1%set_dupl(psb_dupl_add_)
call op_prol%cp_from(acsr1)
call tmp_prol%mv_from(acsr1)
!
! Now we have to gather the halo of tmp_prol, and add it to itself
! to multiply it by A,
!
call psb_sphalo(tmp_prol,desc_a,am4,info,&
& colcnv=.false.,rowscale=.true.)
if (info == psb_success_) call psb_rwextd(ncol,tmp_prol,info,b=am4)
if (info == psb_success_) call am4%free()
if(info /= psb_success_) then
call psb_errpush(psb_err_internal_error_,name,a_err='Halo of tmp_prol')
goto 9999
end if
call psb_spspmm(a,tmp_prol,am3,info)
if(info /= psb_success_) then
call psb_errpush(psb_err_from_subroutine_,name,a_err='spspmm 2')
goto 9999
end if
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'Done SPSPMM 2',parms%aggr_kind, mld_smooth_prol_
call tmp_prol%cp_to(tmpcoo)
call tmpcoo%transp()
nzl = tmpcoo%get_nzeros()
i=0
!
! Now we have to fix this. The only rows of B that are correct
! are those corresponding to "local" aggregates, i.e. indices in ilaggr(:)
!
do k=1, nzl
if ((naggrm1 < tmpcoo%ia(k)) .and.(tmpcoo%ia(k) <= naggrp1)) then
i = i+1
tmpcoo%val(i) = tmpcoo%val(k)
tmpcoo%ia(i) = tmpcoo%ia(k)
tmpcoo%ja(i) = tmpcoo%ja(k)
end if
end do
call tmpcoo%set_nzeros(i)
! call tmpcoo%trim()
call op_restr%mv_from(tmpcoo)
call op_restr%cscnv(info,type='csr',dupl=psb_dupl_add_)
if (info /= psb_success_) then
call psb_errpush(psb_err_from_subroutine_,name,a_err='spcnv op_restr')
goto 9999
end if
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'starting sphalo/ rwxtd'
! op_restr = ((i-wDA)Ptilde)^T
call psb_sphalo(am3,desc_a,am4,info,&
& colcnv=.false.,rowscale=.true.)
if (info == psb_success_) call psb_rwextd(ncol,am3,info,b=am4)
if (info == psb_success_) call am4%free()
if(info /= psb_success_) then
call psb_errpush(psb_err_internal_error_,name,a_err='Extend am3')
goto 9999
end if
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'starting spspmm 3'
call psb_spspmm(op_restr,am3,ac,info)
if (info == psb_success_) call am3%free()
if (info == psb_success_) call ac%cscnv(info,type='csr',dupl=psb_dupl_add_)
if (info /= psb_success_) then
call psb_errpush(psb_err_internal_error_,name,a_err='Build ac = op_restr x am3')
goto 9999
end if
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'Done smooth_aggregate '
call psb_erractionrestore(err_act)
return
9999 continue
call psb_errpush(info,name)
call psb_error_handler(err_act)
return
end subroutine mld_saggrmat_smth_asb