102 lines
3.7 KiB
Fortran
102 lines
3.7 KiB
Fortran
!
|
|
!
|
|
! AMG4PSBLAS version 1.0
|
|
! Algebraic Multigrid Package
|
|
! based on PSBLAS (Parallel Sparse BLAS version 3.7)
|
|
!
|
|
! (C) Copyright 2021
|
|
!
|
|
! Salvatore Filippone
|
|
! Pasqua D'Ambra
|
|
! Fabio Durastante
|
|
!
|
|
! Redistribution and use in source and binary forms, with or without
|
|
! modification, are permitted provided that the following conditions
|
|
! are met:
|
|
! 1. Redistributions of source code must retain the above copyright
|
|
! notice, this list of conditions and the following disclaimer.
|
|
! 2. Redistributions in binary form must reproduce the above copyright
|
|
! notice, this list of conditions, and the following disclaimer in the
|
|
! documentation and/or other materials provided with the distribution.
|
|
! 3. The name of the AMG4PSBLAS group or the names of its contributors may
|
|
! not be used to endorse or promote products derived from this
|
|
! software without specific written permission.
|
|
!
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AMG4PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
! POSSIBILITY OF SUCH DAMAGE.
|
|
!
|
|
module amg_d_pde3d_gauss_mod
|
|
use psb_base_mod, only : psb_dpk_, done, dzero
|
|
real(psb_dpk_), save, private :: epsilon=done/80
|
|
contains
|
|
subroutine pde_set_parm3d_gauss(dat)
|
|
real(psb_dpk_), intent(in) :: dat
|
|
epsilon = dat
|
|
end subroutine pde_set_parm3d_gauss
|
|
!
|
|
! functions parametrizing the differential equation
|
|
!
|
|
function b1_gauss(x,y,z)
|
|
implicit none
|
|
real(psb_dpk_) :: b1_gauss
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
b1_gauss=done/sqrt(3.0_psb_dpk_)-2*x*exp(-(x**2+y**2+z**2))
|
|
end function b1_gauss
|
|
function b2_gauss(x,y,z)
|
|
implicit none
|
|
real(psb_dpk_) :: b2_gauss
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
b2_gauss=done/sqrt(3.0_psb_dpk_)-2*y*exp(-(x**2+y**2+z**2))
|
|
end function b2_gauss
|
|
function b3_gauss(x,y,z)
|
|
implicit none
|
|
real(psb_dpk_) :: b3_gauss
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
b3_gauss=done/sqrt(3.0_psb_dpk_)-2*z*exp(-(x**2+y**2+z**2))
|
|
end function b3_gauss
|
|
function c_gauss(x,y,z)
|
|
implicit none
|
|
real(psb_dpk_) :: c_gauss
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
c_gauss=dzero
|
|
end function c_gauss
|
|
function a1_gauss(x,y,z)
|
|
implicit none
|
|
real(psb_dpk_) :: a1_gauss
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
a1_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
|
end function a1_gauss
|
|
function a2_gauss(x,y,z)
|
|
implicit none
|
|
real(psb_dpk_) :: a2_gauss
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
a2_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
|
end function a2_gauss
|
|
function a3_gauss(x,y,z)
|
|
implicit none
|
|
real(psb_dpk_) :: a3_gauss
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
a3_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
|
end function a3_gauss
|
|
function g_gauss(x,y,z)
|
|
implicit none
|
|
real(psb_dpk_) :: g_gauss
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
g_gauss = dzero
|
|
if (x == done) then
|
|
g_gauss = done
|
|
else if (x == dzero) then
|
|
g_gauss = done
|
|
end if
|
|
end function g_gauss
|
|
end module amg_d_pde3d_gauss_mod
|