|
|
|
C
|
|
|
|
C Parallel Sparse BLAS version 2.2
|
|
|
|
C (C) Copyright 2006/2007/2008
|
|
|
|
C Salvatore Filippone University of Rome Tor Vergata
|
|
|
|
C Alfredo Buttari University of Rome Tor Vergata
|
|
|
|
C
|
|
|
|
C Redistribution and use in source and binary forms, with or without
|
|
|
|
C modification, are permitted provided that the following conditions
|
|
|
|
C are met:
|
|
|
|
C 1. Redistributions of source code must retain the above copyright
|
|
|
|
C notice, this list of conditions and the following disclaimer.
|
|
|
|
C 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
C notice, this list of conditions, and the following disclaimer in the
|
|
|
|
C documentation and/or other materials provided with the distribution.
|
|
|
|
C 3. The name of the PSBLAS group or the names of its contributors may
|
|
|
|
C not be used to endorse or promote products derived from this
|
|
|
|
C software without specific written permission.
|
|
|
|
C
|
|
|
|
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
|
C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
|
|
C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
C POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
C
|
|
|
|
C
|
|
|
|
***********************************************************************
|
|
|
|
* DSRMV modified for SPARKER
|
|
|
|
* *
|
|
|
|
* FUNCTION: Driver for routines performing one of the sparse *
|
|
|
|
* matrix vector operations *
|
|
|
|
* *
|
|
|
|
* y = alpha*op(A)*x + beta*y *
|
|
|
|
* *
|
|
|
|
* where op(A) is one of: *
|
|
|
|
* *
|
|
|
|
* op(A) = A or op(A) = A' or *
|
|
|
|
* op(A) = lower or upper part of A *
|
|
|
|
* *
|
|
|
|
* alpha and beta are scalars. *
|
|
|
|
* The data structure of the matrix is related *
|
|
|
|
* to the scalar computer. *
|
|
|
|
* This is an internal routine called by: *
|
|
|
|
* DSMMV *
|
|
|
|
* *
|
|
|
|
* ENTRY-POINT = DSRMV *
|
|
|
|
* INPUT = *
|
|
|
|
* *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: TRANS *
|
|
|
|
* POSITION: PARAMETER NO 1. *
|
|
|
|
* ATTRIBUTES: CHARACTER*1 *
|
|
|
|
* VALUES: 'N' 'T' 'L' 'U' *
|
|
|
|
* DESCRIPTION: Specifies the form of op(A) to be used in the *
|
|
|
|
* matrix vector multiplications as follows: *
|
|
|
|
* *
|
|
|
|
* TRANS = 'N' , op( A ) = A. *
|
|
|
|
* *
|
|
|
|
* TRANS = 'T' , op( A ) = A'. *
|
|
|
|
* *
|
|
|
|
* TRANS = 'L' or 'U', op( A ) = lower or *
|
|
|
|
* upper part of A *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: DIAG *
|
|
|
|
* POSITION: PARAMETER NO 2. *
|
|
|
|
* ATTRIBUTES: CHARACTER*1 *
|
|
|
|
* VALUES: 'N' 'U' *
|
|
|
|
* DESCRIPTION: *
|
|
|
|
* Specifies whether or not the matrix A has *
|
|
|
|
* unit diagonal as follows: *
|
|
|
|
* *
|
|
|
|
* DIAG = 'N' A is not assumed *
|
|
|
|
* to have unit diagonal *
|
|
|
|
* *
|
|
|
|
* DIAG = 'U' A is assumed *
|
|
|
|
* to have unit diagonal. *
|
|
|
|
* *
|
|
|
|
* WARNING: it is the caller's responsibility *
|
|
|
|
* to ensure that if the matrix has unit *
|
|
|
|
* diagonal, there are no elements of the *
|
|
|
|
* diagonal are stored in the arrays AS and JA. *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: M *
|
|
|
|
* POSITION: PARAMETER NO 3. *
|
|
|
|
* ATTRIBUTES: INTEGER*4. *
|
|
|
|
* VALUES: M >= 0 *
|
|
|
|
* DESCRIPTION: Number of rows of the matrix op(A). *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: N *
|
|
|
|
* POSITION: PARAMETER NO 4. *
|
|
|
|
* ATTRIBUTES: INTEGER*4. *
|
|
|
|
* VALUES: N >= 0 *
|
|
|
|
* DESCRIPTION: Number of columns of the matrix op(A) *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: ALPHA *
|
|
|
|
* POSITION: PARAMETER NO 5. *
|
|
|
|
* ATTRIBUTES: REAL*8. *
|
|
|
|
* VALUES: any. *
|
|
|
|
* DESCRIPTION: Specifies the scalar alpha. *
|
|
|
|
* *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: AS *
|
|
|
|
* POSITION: PARAMETER NO 6. *
|
|
|
|
* ATTRIBUTES: REAL*8: ARRAY(IA(M+1)-1) *
|
|
|
|
* VALUES: ANY *
|
|
|
|
* DESCRIPTION: Array containing the non zero coefficients of *
|
|
|
|
* the sparse matrix op(A). *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: JA *
|
|
|
|
* POSITION: PARAMETER NO 7. *
|
|
|
|
* ATTRIBUTES: INTEGER*4: ARRAY(IA(M+1)-1) *
|
|
|
|
* VALUES: 0 < JA(I) <= M *
|
|
|
|
* DESCRIPTION: Array containing the column number of the *
|
|
|
|
* nonzero coefficients stored in array AS. *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: IA *
|
|
|
|
* POSITION: PARAMETER NO 8. *
|
|
|
|
* ATTRIBUTES: INTEGER*4: ARRAY(*) *
|
|
|
|
* VALUES: IA(I) > 0 *
|
|
|
|
* DESCRIPTION: Contains the pointers for the beginning of *
|
|
|
|
* each rows. *
|
|
|
|
* *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: X *
|
|
|
|
* POSITION: PARAMETER NO 9. *
|
|
|
|
* ATTRIBUTES: REAL*8 ARRAY(N) (or ARRAY(M) when op(A) = A') *
|
|
|
|
* VALUES: any. *
|
|
|
|
* DESCRIPTION: Contains the values of the vector to be *
|
|
|
|
* multiplied by the matrix A. *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: BETA *
|
|
|
|
* POSITION: PARAMETER NO 10. *
|
|
|
|
* ATTRIBUTES: REAL*8. *
|
|
|
|
* VALUES: any. *
|
|
|
|
* DESCRIPTION: Specifies the scalar beta. *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: Y *
|
|
|
|
* POSITION: PARAMETER NO 11. *
|
|
|
|
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
|
|
|
|
* VALUES: any. *
|
|
|
|
* DESCRIPTION: Contains the values of the vector to be *
|
|
|
|
* updated by the matrix-vector multiplication. *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: WORK *
|
|
|
|
* POSITION: PARAMETER NO 12. *
|
|
|
|
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
|
|
|
|
* VALUES: any. *
|
|
|
|
* DESCRIPTION: Work area available to the program. It is used *
|
|
|
|
* only when TRANS = 'T'. *
|
|
|
|
* *
|
|
|
|
* OUTPUT = *
|
|
|
|
* *
|
|
|
|
* *
|
|
|
|
* SYMBOLIC NAME: Y *
|
|
|
|
* POSITION: PARAMETER NO 11. *
|
|
|
|
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
|
|
|
|
* VALUES: any. *
|
|
|
|
* DESCRIPTION: Contains the values of the vector *
|
|
|
|
* updated by the matrix-vector multiplication. *
|
|
|
|
* *
|
|
|
|
* *
|
|
|
|
***********************************************************************
|
|
|
|
SUBROUTINE DCSRMV4(TRANS,DIAG,M,N,ALPHA,AS,JA,IA,X,LDX,
|
|
|
|
+ BETA,Y,LDY, WORK,LWORK,IERROR)
|
|
|
|
use psb_const_mod
|
|
|
|
integer nb
|
|
|
|
parameter (nb=4)
|
|
|
|
C .. Parameters ..
|
|
|
|
real(psb_dpk_) ONE, ZERO
|
|
|
|
PARAMETER (ONE=1.0D0,ZERO=0.0D0)
|
|
|
|
C .. Scalar Arguments ..
|
|
|
|
real(psb_dpk_) ALPHA, BETA
|
|
|
|
INTEGER M, N,LWORK,IERROR,ldx,ldy
|
|
|
|
CHARACTER DIAG, TRANS
|
|
|
|
C .. Array Arguments ..
|
|
|
|
real(psb_dpk_) AS(*), WORK(*), X(LDX,NB), Y(LDY,NB)
|
|
|
|
INTEGER IA(*), JA(*)
|
|
|
|
C .. Local Scalars ..
|
|
|
|
real(psb_dpk_) ACC(nb)
|
|
|
|
INTEGER I, J, K, NCOLA, NROWA
|
|
|
|
LOGICAL SYM, TRA, UNI
|
|
|
|
C .. Executable Statements ..
|
|
|
|
C
|
|
|
|
IERROR = 0
|
|
|
|
UNI = (DIAG.EQ.'U')
|
|
|
|
TRA = (TRANS.EQ.'T')
|
|
|
|
|
|
|
|
C Symmetric matrix upper or lower
|
|
|
|
SYM = ((TRANS.EQ.'L').OR.(TRANS.EQ.'U'))
|
|
|
|
C
|
|
|
|
if ( .not. tra) then
|
|
|
|
nrowa = m
|
|
|
|
ncola = n
|
|
|
|
else if (tra) then
|
|
|
|
nrowa = n
|
|
|
|
ncola = m
|
|
|
|
end if !(....tra)
|
|
|
|
|
|
|
|
if (alpha.eq.zero) then
|
|
|
|
if (beta.eq.zero) then
|
|
|
|
do i = 1, m
|
|
|
|
y(i,1:nb) = zero
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
do 20 i = 1, m
|
|
|
|
y(i,1:nb) = beta*y(i,1:nb)
|
|
|
|
20 continue
|
|
|
|
endif
|
|
|
|
return
|
|
|
|
end if
|
|
|
|
|
|
|
|
c
|
|
|
|
if (sym) then
|
|
|
|
if (uni) then
|
|
|
|
c
|
|
|
|
c ......Symmetric with unitary diagonal.......
|
|
|
|
C ....OK!!
|
|
|
|
C To be optimized
|
|
|
|
|
|
|
|
if (beta.ne.zero) then
|
|
|
|
do i = 1, m
|
|
|
|
C
|
|
|
|
C Product for diagonal elements
|
|
|
|
c
|
|
|
|
y(i,1:nb) = beta*y(i,1:nb) + alpha*x(i,1:nb)
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
do i = 1, m
|
|
|
|
y(i,1:nb) = alpha*x(i,1:nb)
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
|
|
|
|
C Product for other elements
|
|
|
|
do 80 i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do 60 j = ia(i), ia(i+1) - 1
|
|
|
|
k = ja(j)
|
|
|
|
y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb)
|
|
|
|
acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb)
|
|
|
|
60 continue
|
|
|
|
y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb)
|
|
|
|
80 continue
|
|
|
|
C
|
|
|
|
else if ( .not. uni) then
|
|
|
|
C
|
|
|
|
C Check if matrix is lower or upper
|
|
|
|
C
|
|
|
|
if (trans.eq.'L') then
|
|
|
|
C
|
|
|
|
C LOWER CASE: diagonal element is the last element of row
|
|
|
|
C ....OK!
|
|
|
|
|
|
|
|
if (beta.ne.zero) then
|
|
|
|
do 100 i = 1, m
|
|
|
|
y(i,1:nb) = beta*y(i,1:nb)
|
|
|
|
100 continue
|
|
|
|
else
|
|
|
|
do i = 1, m
|
|
|
|
y(i,1:nb) = zero
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
|
|
|
|
do 140 i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do 120 j = ia(i), ia(i+1) - 1 ! it was -2
|
|
|
|
K = ja(j)
|
|
|
|
C
|
|
|
|
C To be optimized
|
|
|
|
C
|
|
|
|
if (k.ne.i) then !for symmetric element
|
|
|
|
y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb)
|
|
|
|
endif
|
|
|
|
acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb)
|
|
|
|
120 continue
|
|
|
|
|
|
|
|
y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb)
|
|
|
|
140 continue
|
|
|
|
else ! ....Trans<>L
|
|
|
|
C
|
|
|
|
C UPPER CASE
|
|
|
|
C ....OK!!
|
|
|
|
C
|
|
|
|
if (beta.ne.zero) then
|
|
|
|
do 160 i = 1, m
|
|
|
|
y(i,1:nb) = beta*y(i,1:nb)
|
|
|
|
160 continue
|
|
|
|
else
|
|
|
|
do i = 1, m
|
|
|
|
y(i,1:nb) = zero
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
|
|
|
|
do 200 i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do 180 j = ia(i) , ia(i+1) - 1 ! removed +1
|
|
|
|
k = ja(j)
|
|
|
|
C
|
|
|
|
C To be optimized
|
|
|
|
C
|
|
|
|
if (k.ne.i) then
|
|
|
|
y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb)
|
|
|
|
endif
|
|
|
|
acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb)
|
|
|
|
180 continue
|
|
|
|
y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb)
|
|
|
|
200 continue
|
|
|
|
end if ! ......TRANS=='L'
|
|
|
|
end if ! ......Not UNI
|
|
|
|
c
|
|
|
|
else if ( .not. tra) then !......NOT SYM
|
|
|
|
|
|
|
|
if ( .not. uni) then
|
|
|
|
C
|
|
|
|
C .......General Not Unit, No Traspose
|
|
|
|
C
|
|
|
|
if (beta == zero) then
|
|
|
|
if (alpha==one) then
|
|
|
|
do i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = acc
|
|
|
|
enddo
|
|
|
|
else if (alpha==-one) then
|
|
|
|
do i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc - as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = acc
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
do i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = alpha*acc
|
|
|
|
enddo
|
|
|
|
|
|
|
|
endif
|
|
|
|
|
|
|
|
else if (beta==one) then
|
|
|
|
|
|
|
|
if (alpha==one) then
|
|
|
|
do i = 1, m
|
|
|
|
acc = y(i,1:nb)
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = acc
|
|
|
|
enddo
|
|
|
|
else if (alpha==-one) then
|
|
|
|
do i = 1, m
|
|
|
|
acc = y(i,1:nb)
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc - as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = acc
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
do i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = alpha*acc + y(i,1:nb)
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
|
|
|
|
else if (beta==-one) then
|
|
|
|
|
|
|
|
if (alpha==one) then
|
|
|
|
do i = 1, m
|
|
|
|
acc = -y(i,1:nb)
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = acc
|
|
|
|
enddo
|
|
|
|
else if (alpha==-one) then
|
|
|
|
do i = 1, m
|
|
|
|
acc = -y(i,1:nb)
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc - as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = acc
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
do i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = alpha*acc - y(i,1:nb)
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
else
|
|
|
|
if (alpha==one) then
|
|
|
|
do i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = acc + beta*y(i,1:nb)
|
|
|
|
enddo
|
|
|
|
else if (alpha==-one) then
|
|
|
|
do i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc - as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = acc + beta*y(i,1:nb)
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
do i = 1, m
|
|
|
|
acc = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc = acc + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = alpha*acc + beta*y(i,1:nb)
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
end if
|
|
|
|
|
|
|
|
c
|
|
|
|
else if (uni) then
|
|
|
|
c
|
|
|
|
if (beta.ne.zero) then
|
|
|
|
do 280 i = 1, m
|
|
|
|
acc(1:nb) = zero
|
|
|
|
do 260 j = ia(i), ia(i+1) - 1
|
|
|
|
acc(1:nb) = acc(1:nb) + as(j)*x(ja(j),1:nb)
|
|
|
|
260 continue
|
|
|
|
y(i,1:nb) = alpha*(acc(1:nb)+x(i,1:nb)) + beta*y(i,1:nb)
|
|
|
|
280 continue
|
|
|
|
else !(beta.eq.zero)
|
|
|
|
do i = 1, m
|
|
|
|
acc(1:nb) = zero
|
|
|
|
do j = ia(i), ia(i+1) - 1
|
|
|
|
acc(1:nb) = acc(1:nb) + as(j)*x(ja(j),1:nb)
|
|
|
|
enddo
|
|
|
|
y(i,1:nb) = alpha*(acc(1:nb)+x(i,1:nb))
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
end if !....End Testing on UNI
|
|
|
|
C
|
|
|
|
else if (tra) then !....Else on SYM (swapped M and N)
|
|
|
|
C
|
|
|
|
if ( .not. uni) then
|
|
|
|
c
|
|
|
|
if (beta.ne.zero) then
|
|
|
|
do 300 i = 1, m
|
|
|
|
y(i,1:nb) = beta*y(i,1:nb)
|
|
|
|
300 continue
|
|
|
|
else !(BETA.EQ.ZERO)
|
|
|
|
do i = 1, m
|
|
|
|
y(i,1:nb) = zero
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
c
|
|
|
|
else if (uni) then
|
|
|
|
c
|
|
|
|
|
|
|
|
if (beta.ne.zero) then
|
|
|
|
do 320 i = 1, m
|
|
|
|
y(i,1:nb) = beta*y(i,1:nb) + alpha*x(i,1:nb)
|
|
|
|
320 continue
|
|
|
|
else !(BETA.EQ.ZERO)
|
|
|
|
do i = 1, m
|
|
|
|
y(i,1:nb) = alpha*x(i,1:nb)
|
|
|
|
enddo
|
|
|
|
endif
|
|
|
|
|
|
|
|
c
|
|
|
|
end if !....UNI
|
|
|
|
C
|
|
|
|
if (alpha.eq.one) then
|
|
|
|
c
|
|
|
|
do 360 i = 1, n
|
|
|
|
do 340 j = ia(i), ia(i+1) - 1
|
|
|
|
k = ja(j)
|
|
|
|
y(k,1:nb) = y(k,1:nb) + as(j)*x(i,1:nb)
|
|
|
|
340 continue
|
|
|
|
360 continue
|
|
|
|
c
|
|
|
|
else if (alpha.eq.-one) then
|
|
|
|
c
|
|
|
|
do 400 i = 1, n
|
|
|
|
do 380 j = ia(i), ia(i+1) - 1
|
|
|
|
k = ja(j)
|
|
|
|
y(k,1:nb) = y(k,1:nb) - as(j)*x(i,1:nb)
|
|
|
|
380 continue
|
|
|
|
400 continue
|
|
|
|
c
|
|
|
|
else !.....Else on TRA
|
|
|
|
C
|
|
|
|
C This work array is used for efficiency
|
|
|
|
C
|
|
|
|
if (lwork.lt.n) then
|
|
|
|
ierror = 60
|
|
|
|
work(1) = dble(n)
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
c$$$ do 420 i = 1, n
|
|
|
|
c$$$ work(i) = alpha*x(i,1:4)
|
|
|
|
c$$$ 420 continue
|
|
|
|
c$$$C
|
|
|
|
c$$$ DO 460 I = 1, n
|
|
|
|
c$$$ DO 440 J = IA(I), IA(I+1) - 1
|
|
|
|
c$$$ K = JA(J)
|
|
|
|
c$$$ Y(K) = Y(K) + AS(J)*WORK(I)
|
|
|
|
c$$$ 440 CONTINUE
|
|
|
|
c$$$ 460 CONTINUE
|
|
|
|
c
|
|
|
|
end if !.....end testing on alpha
|
|
|
|
|
|
|
|
end if !.....end testing on sym
|
|
|
|
c
|
|
|
|
return
|
|
|
|
c
|
|
|
|
c end of dsrmv
|
|
|
|
c
|
|
|
|
end
|
|
|
|
|