base/modules/psb_sort_mod.f90
 test/pargen/Makefile
 test/pargen/ppde.f90
 test/pargen/ppde3d.f90
 test/pargen/runs/ppde.inp
 test/pargen/spde.f90
 test/pargen/spde3d.f90
 util/Makefile
 util/psb_d_genmat_impl.f90
 util/psb_d_genmat_mod.f90
 util/psb_d_genpde_impl.f90
 util/psb_d_genpde_mod.f90
 util/psb_s_genpde_impl.f90
 util/psb_s_genpde_mod.f90
 util/psb_util_mod.f90

Factored PDE generation code. 
Defined 2D code.
psblas3-type-indexed
Salvatore Filippone 13 years ago
parent 80c02a507e
commit 0aa1bd1c24

@ -14,20 +14,31 @@ FINCLUDES=$(FMFLAG)$(LIBDIR) $(FMFLAG).
EXEDIR=./runs
all: ppde spde
all: ppde3d spde3d ppde2d spde2d
ppde: ppde.o
$(F90LINK) ppde.o -o ppde $(PSBLAS_LIB) $(LDLIBS)
/bin/mv ppde $(EXEDIR)
ppde3d: ppde3d.o
$(F90LINK) ppde3d.o -o ppde3d $(PSBLAS_LIB) $(LDLIBS)
/bin/mv ppde3d $(EXEDIR)
spde: spde.o
$(F90LINK) spde.o -o spde $(PSBLAS_LIB) $(LDLIBS)
/bin/mv spde $(EXEDIR)
spde3d: spde3d.o
$(F90LINK) spde3d.o -o spde3d $(PSBLAS_LIB) $(LDLIBS)
/bin/mv spde3d $(EXEDIR)
ppde2d: ppde2d.o
$(F90LINK) ppde2d.o -o ppde2d $(PSBLAS_LIB) $(LDLIBS)
/bin/mv ppde2d $(EXEDIR)
spde2d: spde2d.o
$(F90LINK) spde2d.o -o spde2d $(PSBLAS_LIB) $(LDLIBS)
/bin/mv spde2d $(EXEDIR)
clean:
/bin/rm -f ppde.o spde.o $(EXEDIR)/ppde
/bin/rm -f ppde3d.o spde3d.o ppde2d.o spde2d.o \
$(EXEDIR)/ppde3d $(EXEDIR)/spde3d $(EXEDIR)/ppde2d $(EXEDIR)/spde2d
verycleanlib:
(cd ../..; make veryclean)
lib:

@ -29,39 +29,33 @@
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: ppde.f90
! File: ppde3d.f90
!
! Program: ppde
! Program: ppde3d
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs.
!
!
! The PDE is a general second order equation in 3d
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + a4 u = 0
! dxdx dydy dzdz dx dy dz
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
! with Dirichlet boundary conditions
! u = g
!
! Example taken from:
! C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to a BLOCK
! data distribution.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = exp(-x^2-y^2-z^2)
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
program ppde
program ppde3d
use psb_base_mod
use psb_prec_mod
use psb_krylov_mod
@ -109,7 +103,7 @@ program ppde
stop
endif
if(psb_get_errstatus() /= 0) goto 9999
name='pde90'
name='pde3d90'
call psb_set_errverbosity(2)
!
! Hello world
@ -128,14 +122,13 @@ program ppde
!
call psb_barrier(ictxt)
t1 = psb_wtime()
call gen_prob3d(ictxt,idim,a,bv,xxv,desc_a,afmt,&
call psb_gen_prob3d(ictxt,idim,a,bv,xxv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info)
!!$ call create_matrix(idim,a,bv,xxv,desc_a,ictxt,afmt,info)
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='create_matrix'
ch_err='psb_gen_prob3d'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
@ -283,7 +276,9 @@ contains
call psb_bcast(ictxt,intbuf(1:5))
write(psb_out_unit,'("Solving matrix : ell1")')
write(psb_out_unit,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim
write(psb_out_unit,&
& '("Grid dimensions : ",i4," x ",i4," x ",i4)') &
& idim,idim,idim
write(psb_out_unit,'("Number of processors : ",i0)')np
write(psb_out_unit,'("Data distribution : BLOCK")')
write(psb_out_unit,'("Preconditioner : ",a)') ptype
@ -315,7 +310,7 @@ contains
subroutine pr_usage(iout)
integer(psb_ipk_) :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde90 methd prec dim &
write(iout,*)' usage: pde3d90 methd prec dim &
&[istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab cgs rgmres bicgstabl'
@ -330,299 +325,6 @@ contains
write(iout,*)' iterations '
end subroutine pr_usage
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine create_matrix(idim,a,bv,xxv,desc_a,ictxt,afmt,info)
!
! discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + a4 u
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
!
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
use psb_base_mod
implicit none
integer(psb_ipk_) :: idim
integer(psb_ipk_), parameter :: nb=20
type(psb_d_vect_type) :: xxv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
type(psb_dspmat_type) :: a
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: element
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
real(psb_dpk_) :: a1, a2, a3, a4, b1, b2, b3
external :: a1, a2, a3, a4, b1, b2, b3
integer(psb_ipk_) :: err_act
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xxv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
nlr = desc_a%get_local_rows()
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),myidx(nlr),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
do i=1,nlr
myidx(i) = i
end do
call psb_loc_to_glob(myidx,desc_a,info)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
element = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = ix*deltah
y = iy*deltah
z = iz*deltah
if (glob_row == 1) then
write(0,*) 'Starting from ',ix,iy,iz,x,y,z,deltah
end if
if (glob_row == nt) then
write(0,*) 'Ending at ',ix,iy,iz,x,y,z,deltah
end if
if (i == nlr) then
write(0,*) 'Ending at ',ix,iy,iz,x,y,z,deltah
end if
! check on boundary points
zt(k) = 0.d0
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
if (ix == 1) then
val(element) = -b1(x,y,z)/sqdeltah-a1(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*(-val(element))
else
val(element) = -b1(x,y,z)/sqdeltah-a1(x,y,z)/deltah2
icol(element) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y-1,z)
if (iy == 1) then
val(element) = -b2(x,y,z)/sqdeltah-a2(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
else
val(element) = -b2(x,y,z)/sqdeltah-a2(x,y,z)/deltah2
icol(element) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y,z-1)
if (iz == 1) then
val(element)=-b3(x,y,z)/sqdeltah-a3(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
else
val(element)=-b3(x,y,z)/sqdeltah-a3(x,y,z)/deltah2
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y,z)
val(element)=(2*b1(x,y,z) + 2*b2(x,y,z) + 2*b3(x,y,z))/sqdeltah&
& +a4(x,y,z)
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(element) = glob_row
element = element+1
! term depending on (x,y,z+1)
if (iz == idim) then
val(element)=-b3(x,y,z)/sqdeltah+a3(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
else
val(element)=-b3(x,y,z)/sqdeltah+a3(x,y,z)/deltah2
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y+1,z)
if (iy == idim) then
val(element)=-b2(x,y,z)/sqdeltah+a2(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
else
val(element)=-b2(x,y,z)/sqdeltah+a2(x,y,z)/deltah2
icol(element) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(element) = glob_row
element = element+1
endif
! term depending on (x+1,y,z)
if (ix==idim) then
val(element)=-b1(x,y,z)/sqdeltah+a1(x,y,z)/deltah2
zt(k) = exp(-y**2-z**2)*exp(-x)*(-val(element))
else
val(element)=-b1(x,y,z)/sqdeltah+a1(x,y,z)/deltah2
icol(element) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(element) = glob_row
element = element+1
endif
end do
call psb_spins(element-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xxv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) &
& call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xxv,desc_a,info)
if (info == psb_success_) call psb_geasb(bv,desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine create_matrix
!
! functions parametrizing the differential equation
!
@ -630,19 +332,19 @@ contains
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y,z
b1=1.414d0
b1=1.d0/sqrt(3.d0)
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y,z
b2=1.414d0
b2=1.d0/sqrt(3.d0)
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b3
real(psb_dpk_), intent(in) :: x,y,z
b3=1.414d0
b3=1.d0/sqrt(3.d0)
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_dpk_
@ -680,6 +382,6 @@ contains
end if
end function g
end program ppde
end program ppde3d

@ -2,7 +2,7 @@
BICGSTAB Iterative method BICGSTAB CGS BICG BICGSTABL RGMRES
BJAC Preconditioner NONE DIAG BJAC
CSR Storage format for matrix A: CSR COO JAD
080 Domain size (acutal system is this**3)
060 Domain size (acutal system is this**3)
2 Stopping criterion
1000 MAXIT
-2 ITRACE

@ -1,692 +0,0 @@
!!$
!!$ Parallel Sparse BLAS version 2.3.1
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: ppde.f90
!
! Program: ppde
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs.
!
!
! The PDE is a general second order equation in 3d
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + a4 u = 0
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
!
! Example taken from:
! C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to a BLOCK
! data distribution.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = exp(-x^2-y^2-z^2)
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
program ppde
use psb_base_mod
use psb_prec_mod
use psb_krylov_mod
use psb_util_mod
implicit none
! input parameters
character(len=20) :: kmethd, ptype
character(len=5) :: afmt
integer(psb_ipk_) :: idim
! miscellaneous
real(psb_spk_), parameter :: one = 1.0
real(psb_dpk_) :: t1, t2, tprec
! sparse matrix and preconditioner
type(psb_sspmat_type) :: a
type(psb_sprec_type) :: prec
! descriptor
type(psb_desc_type) :: desc_a, desc_b
! dense matrices
type(psb_s_vect_type) :: xxv,bv, vtst
real(psb_spk_), allocatable :: tst(:)
! blacs parameters
integer(psb_ipk_) :: ictxt, iam, np
! solver parameters
integer(psb_ipk_) :: iter, itmax,itrace, istopc, irst
integer(psb_long_int_k_) :: amatsize, precsize, descsize, d2size
real(psb_spk_) :: err, eps
! other variables
integer(psb_ipk_) :: info, i
character(len=20) :: name,ch_err
character(len=40) :: fname
info=psb_success_
call psb_init(ictxt)
call psb_info(ictxt,iam,np)
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ictxt)
stop
endif
if(psb_get_errstatus() /= 0) goto 9999
name='pde90'
call psb_set_errverbosity(2)
!
! Hello world
!
if (iam == psb_root_) then
write(*,*) 'Welcome to PSBLAS version: ',psb_version_string_
write(*,*) 'This is the ',trim(name),' sample program'
end if
!
! get parameters
!
call get_parms(ictxt,kmethd,ptype,afmt,idim,istopc,itmax,itrace,irst)
!
! allocate and fill in the coefficient matrix, rhs and initial guess
!
call psb_barrier(ictxt)
t1 = psb_wtime()
call create_matrix(idim,a,bv,xxv,desc_a,ictxt,afmt,info)
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='create_matrix'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (iam == psb_root_) write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) write(psb_out_unit,'(" ")')
!!$ write(fname,'(a,i0,a)') 'pde-',idim,'.hb'
!!$ call hb_write(a,info,filename=fname,rhs=b,key='PDEGEN',mtitle='MLD2P4 pdegen Test matrix ')
!!$ write(fname,'(a,i2.2,a,i2.2,a)') 'amat-',iam,'-',np,'.mtx'
!!$ call a%print(fname)
!!$ call psb_cdprt(20+iam,desc_a,short=.false.)
!!$ call psb_cdcpy(desc_a,desc_b,info)
!!$ call psb_set_debug_level(9999)
call psb_cdbldext(a,desc_a,2,desc_b,info,extype=psb_ovt_asov_)
if (info /= 0) then
write(0,*) 'Error from bldext'
call psb_abort(ictxt)
end if
!
! prepare the preconditioner.
!
if(iam == psb_root_) write(psb_out_unit,'("Setting preconditioner to : ",a)')ptype
call psb_precinit(prec,ptype,info)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_precbld(a,desc_a,prec,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_precbld'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tprec = psb_wtime()-t1
call psb_amx(ictxt,tprec)
if (iam == psb_root_) write(psb_out_unit,'("Preconditioner time : ",es12.5)')tprec
if (iam == psb_root_) write(psb_out_unit,'(" ")')
!
! iterative method parameters
!
if(iam == psb_root_) write(psb_out_unit,'("Calling iterative method ",a)')kmethd
call psb_barrier(ictxt)
t1 = psb_wtime()
eps = 1.d-9
call psb_krylov(kmethd,a,prec,bv,xxv,eps,desc_a,info,&
& itmax=itmax,iter=iter,err=err,itrace=itrace,istop=istopc,irst=irst)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='solver routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
call psb_amx(ictxt,t2)
amatsize = a%sizeof()
descsize = desc_a%sizeof()
precsize = prec%sizeof()
call psb_sum(ictxt,amatsize)
call psb_sum(ictxt,descsize)
call psb_sum(ictxt,precsize)
if (iam == psb_root_) then
write(psb_out_unit,'(" ")')
write(psb_out_unit,'("Time to solve matrix : ",es12.5)')t2
write(psb_out_unit,'("Time per iteration : ",es12.5)')t2/iter
write(psb_out_unit,'("Number of iterations : ",i0)')iter
write(psb_out_unit,'("Convergence indicator on exit : ",es12.5)')err
write(psb_out_unit,'("Info on exit : ",i0)')info
write(psb_out_unit,'("Total memory occupation for A: ",i12)')amatsize
write(psb_out_unit,'("Total memory occupation for PREC: ",i12)')precsize
write(psb_out_unit,'("Total memory occupation for DESC_A: ",i12)')descsize
write(psb_out_unit,'("Storage type for DESC_A: ",a)') desc_a%indxmap%get_fmt()
write(psb_out_unit,'("Storage type for DESC_B: ",a)') desc_b%indxmap%get_fmt()
end if
!
if (.false.) then
call psb_geall(tst,desc_b, info)
call psb_geall(vtst,desc_b, info)
vtst%v%v = iam+1
call psb_geasb(vtst,desc_b,info)
tst = vtst%get_vect()
call psb_geasb(tst,desc_b,info)
call psb_ovrl(vtst,desc_b,info,update=psb_avg_)
call psb_ovrl(tst,desc_b,info,update=psb_avg_)
write(0,*) iam,' After ovrl:',vtst%v%v
write(0,*) iam,' After ovrl:',tst
end if
!
! cleanup storage and exit
!
call psb_gefree(bv,desc_a,info)
call psb_gefree(xxv,desc_a,info)
call psb_spfree(a,desc_a,info)
call psb_precfree(prec,info)
call psb_cdfree(desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='free routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
9999 continue
if(info /= psb_success_) then
call psb_error(ictxt)
end if
call psb_exit(ictxt)
stop
contains
!
! get iteration parameters from standard input
!
subroutine get_parms(ictxt,kmethd,ptype,afmt,idim,istopc,itmax,itrace,irst)
integer(psb_ipk_) :: ictxt
character(len=*) :: kmethd, ptype, afmt
integer(psb_ipk_) :: idim, istopc,itmax,itrace,irst
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: intbuf(10), ip
call psb_info(ictxt, iam, np)
if (iam == 0) then
read(psb_inp_unit,*) ip
if (ip >= 3) then
read(psb_inp_unit,*) kmethd
read(psb_inp_unit,*) ptype
read(psb_inp_unit,*) afmt
! broadcast parameters to all processors
call psb_bcast(ictxt,kmethd)
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,ptype)
read(psb_inp_unit,*) idim
if (ip >= 4) then
read(psb_inp_unit,*) istopc
else
istopc=1
endif
if (ip >= 5) then
read(psb_inp_unit,*) itmax
else
itmax=500
endif
if (ip >= 6) then
read(psb_inp_unit,*) itrace
else
itrace=-1
endif
if (ip >= 7) then
read(psb_inp_unit,*) irst
else
irst=1
endif
! broadcast parameters to all processors
intbuf(1) = idim
intbuf(2) = istopc
intbuf(3) = itmax
intbuf(4) = itrace
intbuf(5) = irst
call psb_bcast(ictxt,intbuf(1:5))
write(psb_out_unit,'("Solving matrix : ell1")')
write(psb_out_unit,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim
write(psb_out_unit,'("Number of processors : ",i0)')np
write(psb_out_unit,'("Data distribution : BLOCK")')
write(psb_out_unit,'("Preconditioner : ",a)') ptype
write(psb_out_unit,'("Iterative method : ",a)') kmethd
write(psb_out_unit,'(" ")')
else
! wrong number of parameter, print an error message and exit
call pr_usage(0)
call psb_abort(ictxt)
stop 1
endif
else
call psb_bcast(ictxt,kmethd)
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,ptype)
call psb_bcast(ictxt,intbuf(1:5))
idim = intbuf(1)
istopc = intbuf(2)
itmax = intbuf(3)
itrace = intbuf(4)
irst = intbuf(5)
end if
return
end subroutine get_parms
!
! print an error message
!
subroutine pr_usage(iout)
integer(psb_ipk_) :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde90 methd prec dim &
&[istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab cgs rgmres bicgstabl'
write(iout,*)' prec : bjac diag none'
write(iout,*)' dim number of points along each axis'
write(iout,*)' the size of the resulting linear '
write(iout,*)' system is dim**3'
write(iout,*)' istop stopping criterion 1, 2 '
write(iout,*)' itmax maximum number of iterations [500] '
write(iout,*)' itrace <=0 (no tracing, default) or '
write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations '
end subroutine pr_usage
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine create_matrix(idim,a,bv,xxv,desc_a,ictxt,afmt,info)
!
! discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + a4 u
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = exp(-x^2-y^2-z^2)
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
use psb_base_mod
use psb_mat_mod
implicit none
integer(psb_ipk_) :: idim
integer(psb_ipk_), parameter :: nb=20
type(psb_s_vect_type) :: xxv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
type(psb_sspmat_type) :: a
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: element
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_),parameter :: rhs=0.0,one=1.0,zero=0.0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen
real(psb_spk_) :: a1, a2, a3, a4, b1, b2, b3
external :: a1, a2, a3, a4, b1, b2, b3
integer(psb_ipk_) :: err_act
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
deltah = 1.0/(idim-1)
sqdeltah = deltah*deltah
deltah2 = 2.0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xxv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
nlr = desc_a%get_local_rows()
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),myidx(nlr),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
do i=1,nlr
myidx(i) = i
end do
call psb_loc_to_glob(myidx,desc_a,info)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
element = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = ix*deltah
y = iy*deltah
z = iz*deltah
! check on boundary points
zt(k) = 0.d0
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
if (ix == 1) then
val(element) = -b1(x,y,z)/sqdeltah-a1(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*(-val(element))
else
val(element) = -b1(x,y,z)/sqdeltah-a1(x,y,z)/deltah2
icol(element) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y-1,z)
if (iy == 1) then
val(element) = -b2(x,y,z)/sqdeltah-a2(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
else
val(element) = -b2(x,y,z)/sqdeltah-a2(x,y,z)/deltah2
icol(element) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y,z-1)
if (iz == 1) then
val(element)=-b3(x,y,z)/sqdeltah-a3(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
else
val(element)=-b3(x,y,z)/sqdeltah-a3(x,y,z)/deltah2
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y,z)
val(element)=(2*b1(x,y,z) + 2*b2(x,y,z) + 2*b3(x,y,z))/sqdeltah&
& +a4(x,y,z)
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(element) = glob_row
element = element+1
! term depending on (x,y,z+1)
if (iz == idim) then
val(element)=-b3(x,y,z)/sqdeltah+a3(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
else
val(element)=-b3(x,y,z)/sqdeltah+a3(x,y,z)/deltah2
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y+1,z)
if (iy == idim) then
val(element)=-b2(x,y,z)/sqdeltah+a2(x,y,z)/deltah2
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
else
val(element)=-b2(x,y,z)/sqdeltah+a2(x,y,z)/deltah2
icol(element) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(element) = glob_row
element = element+1
endif
! term depending on (x+1,y,z)
if (ix==idim) then
val(element)=-b1(x,y,z)/sqdeltah+a1(x,y,z)/deltah2
zt(k) = exp(-y**2-z**2)*exp(-x)*(-val(element))
else
val(element)=-b1(x,y,z)/sqdeltah+a1(x,y,z)/deltah2
icol(element) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(element) = glob_row
element = element+1
endif
end do
call psb_spins(element-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xxv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
if (info == psb_success_) &
& call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xxv,desc_a,info)
if (info == psb_success_) call psb_geasb(bv,desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-assembly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine create_matrix
end program ppde
!
! functions parametrizing the differential equation
!
function a1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1
real(psb_spk_) :: x,y,z
a1=1.414e0
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2
real(psb_spk_) :: x,y,z
a2=1.414e0
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a3
real(psb_spk_) :: x,y,z
a3=1.414e0
end function a3
function a4(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a4
real(psb_spk_) :: x,y,z
a4=0.e0
end function a4
function b1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b1
real(psb_spk_) :: x,y,z
b1=1.e0/80
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b2
real(psb_spk_) :: x,y,z
b2=1.e0/80
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b3
real(psb_spk_) :: x,y,z
b3=1.e0/80
end function b3

@ -0,0 +1,388 @@
!!$
!!$ Parallel Sparse BLAS version 2.3.1
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: spde3d.f90
!
! Program: spde3d
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs.
!
!
! The PDE is a general second order equation in 3d
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to a BLOCK
! data distribution.
!
!
program spde3d
use psb_base_mod
use psb_prec_mod
use psb_krylov_mod
use psb_util_mod
implicit none
! input parameters
character(len=20) :: kmethd, ptype
character(len=5) :: afmt
integer(psb_ipk_) :: idim
! miscellaneous
real(psb_spk_), parameter :: one = 1.e0
real(psb_dpk_) :: t1, t2, tprec
! sparse matrix and preconditioner
type(psb_sspmat_type) :: a
type(psb_sprec_type) :: prec
! descriptor
type(psb_desc_type) :: desc_a
! dense vectors
type(psb_s_vect_type) :: xxv,bv
! parallel environment
integer(psb_ipk_) :: ictxt, iam, np
! solver parameters
integer(psb_ipk_) :: iter, itmax,itrace, istopc, irst
integer(psb_long_int_k_) :: amatsize, precsize, descsize, d2size
real(psb_spk_) :: err, eps
! other variables
integer(psb_ipk_) :: info, i
character(len=20) :: name,ch_err
character(len=40) :: fname
info=psb_success_
call psb_init(ictxt)
call psb_info(ictxt,iam,np)
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ictxt)
stop
endif
if(psb_get_errstatus() /= 0) goto 9999
name='pde3d90'
call psb_set_errverbosity(2)
!
! Hello world
!
if (iam == psb_root_) then
write(*,*) 'Welcome to PSBLAS version: ',psb_version_string_
write(*,*) 'This is the ',trim(name),' sample program'
end if
!
! get parameters
!
call get_parms(ictxt,kmethd,ptype,afmt,idim,istopc,itmax,itrace,irst)
!
! allocate and fill in the coefficient matrix, rhs and initial guess
!
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_gen_prob3d(ictxt,idim,a,bv,xxv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info)
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_gen_prob3d'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (iam == psb_root_) write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) write(psb_out_unit,'(" ")')
!
! prepare the preconditioner.
!
if(iam == psb_root_) write(psb_out_unit,'("Setting preconditioner to : ",a)')ptype
call psb_precinit(prec,ptype,info)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_precbld(a,desc_a,prec,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_precbld'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tprec = psb_wtime()-t1
call psb_amx(ictxt,tprec)
if (iam == psb_root_) write(psb_out_unit,'("Preconditioner time : ",es12.5)')tprec
if (iam == psb_root_) write(psb_out_unit,'(" ")')
!
! iterative method parameters
!
if(iam == psb_root_) write(psb_out_unit,'("Calling iterative method ",a)')kmethd
call psb_barrier(ictxt)
t1 = psb_wtime()
eps = 1.d-9
call psb_krylov(kmethd,a,prec,bv,xxv,eps,desc_a,info,&
& itmax=itmax,iter=iter,err=err,itrace=itrace,istop=istopc,irst=irst)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='solver routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
call psb_amx(ictxt,t2)
amatsize = a%sizeof()
descsize = desc_a%sizeof()
precsize = prec%sizeof()
call psb_sum(ictxt,amatsize)
call psb_sum(ictxt,descsize)
call psb_sum(ictxt,precsize)
if (iam == psb_root_) then
write(psb_out_unit,'(" ")')
write(psb_out_unit,'("Time to solve matrix : ",es12.5)')t2
write(psb_out_unit,'("Time per iteration : ",es12.5)')t2/iter
write(psb_out_unit,'("Number of iterations : ",i0)')iter
write(psb_out_unit,'("Convergence indicator on exit : ",es12.5)')err
write(psb_out_unit,'("Info on exit : ",i0)')info
write(psb_out_unit,'("Total memory occupation for A: ",i12)')amatsize
write(psb_out_unit,'("Total memory occupation for PREC: ",i12)')precsize
write(psb_out_unit,'("Total memory occupation for DESC_A: ",i12)')descsize
write(psb_out_unit,'("Storage type for DESC_A: ",a)') desc_a%indxmap%get_fmt()
end if
!
! cleanup storage and exit
!
call psb_gefree(bv,desc_a,info)
call psb_gefree(xxv,desc_a,info)
call psb_spfree(a,desc_a,info)
call psb_precfree(prec,info)
call psb_cdfree(desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='free routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
9999 continue
if(info /= psb_success_) then
call psb_error(ictxt)
end if
call psb_exit(ictxt)
stop
contains
!
! get iteration parameters from standard input
!
subroutine get_parms(ictxt,kmethd,ptype,afmt,idim,istopc,itmax,itrace,irst)
integer(psb_ipk_) :: ictxt
character(len=*) :: kmethd, ptype, afmt
integer(psb_ipk_) :: idim, istopc,itmax,itrace,irst
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: intbuf(10), ip
call psb_info(ictxt, iam, np)
if (iam == 0) then
read(psb_inp_unit,*) ip
if (ip >= 3) then
read(psb_inp_unit,*) kmethd
read(psb_inp_unit,*) ptype
read(psb_inp_unit,*) afmt
! broadcast parameters to all processors
call psb_bcast(ictxt,kmethd)
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,ptype)
read(psb_inp_unit,*) idim
if (ip >= 4) then
read(psb_inp_unit,*) istopc
else
istopc=1
endif
if (ip >= 5) then
read(psb_inp_unit,*) itmax
else
itmax=500
endif
if (ip >= 6) then
read(psb_inp_unit,*) itrace
else
itrace=-1
endif
if (ip >= 7) then
read(psb_inp_unit,*) irst
else
irst=1
endif
! broadcast parameters to all processors
intbuf(1) = idim
intbuf(2) = istopc
intbuf(3) = itmax
intbuf(4) = itrace
intbuf(5) = irst
call psb_bcast(ictxt,intbuf(1:5))
write(psb_out_unit,'("Solving matrix : ell1")')
write(psb_out_unit,&
& '("Grid dimensions : ",i4," x ",i4," x ",i4)') &
& idim,idim,idim
write(psb_out_unit,'("Number of processors : ",i0)')np
write(psb_out_unit,'("Data distribution : BLOCK")')
write(psb_out_unit,'("Preconditioner : ",a)') ptype
write(psb_out_unit,'("Iterative method : ",a)') kmethd
write(psb_out_unit,'(" ")')
else
! wrong number of parameter, print an error message and exit
call pr_usage(0)
call psb_abort(ictxt)
stop 1
endif
else
call psb_bcast(ictxt,kmethd)
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,ptype)
call psb_bcast(ictxt,intbuf(1:5))
idim = intbuf(1)
istopc = intbuf(2)
itmax = intbuf(3)
itrace = intbuf(4)
irst = intbuf(5)
end if
return
end subroutine get_parms
!
! print an error message
!
subroutine pr_usage(iout)
integer(psb_ipk_) :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde3d90 methd prec dim &
&[istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab cgs rgmres bicgstabl'
write(iout,*)' prec : bjac diag none'
write(iout,*)' dim number of points along each axis'
write(iout,*)' the size of the resulting linear '
write(iout,*)' system is dim**3'
write(iout,*)' istop stopping criterion 1, 2 '
write(iout,*)' itmax maximum number of iterations [500] '
write(iout,*)' itrace <=0 (no tracing, default) or '
write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations '
end subroutine pr_usage
!
! functions parametrizing the differential equation
!
function b1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y,z
b1=1.e0/sqrt(3.e0)
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y,z
b2=1.e0/sqrt(3.e0)
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b3
real(psb_spk_), intent(in) :: x,y,z
b3=1.e0/sqrt(3.e0)
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y,z
c=0.e0
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y,z
a1=1.e0/80
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y,z
a2=1.e0/80
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a3
real(psb_spk_), intent(in) :: x,y,z
a3=1.e0/80
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y,z
g = szero
if (x == sone) then
g = sone
else if (x == szero) then
g = exp(y**2-z**2)
end if
end function g
end program spde3d

@ -7,7 +7,7 @@ HERE=.
BASEOBJS= psb_blockpart_mod.o psb_metispart_mod.o \
psb_hbio_mod.o psb_mmio_mod.o psb_mat_dist_mod.o \
psb_renum_mod.o psb_gps_mod.o psb_d_genmat_mod.o
psb_renum_mod.o psb_gps_mod.o psb_d_genpde_mod.o psb_s_genpde_mod.o
IMPLOBJS= psb_s_hbio_impl.o psb_d_hbio_impl.o \
psb_c_hbio_impl.o psb_z_hbio_impl.o \
psb_s_mmio_impl.o psb_d_mmio_impl.o \
@ -16,7 +16,7 @@ IMPLOBJS= psb_s_hbio_impl.o psb_d_hbio_impl.o \
psb_c_mat_dist_impl.o psb_z_mat_dist_impl.o \
psb_s_renum_impl.o psb_d_renum_impl.o \
psb_c_renum_impl.o psb_z_renum_impl.o \
psb_d_genmat_impl.o
psb_d_genpde_impl.o psb_s_genpde_impl.o
MODOBJS=psb_util_mod.o $(BASEOBJS)
COBJS=psb_amd_order.o
OBJS=$(MODOBJS) $(IMPLOBJS) $(COBJS)

@ -1,284 +0,0 @@
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine gen_prob3d(ictxt,idim,a,bv,xv,desc_a,afmt,a1,a2,a3,b1,b2,b3,c,g,info)
use psb_base_mod
use psb_d_genmat_mod, psb_protect_name => gen_prob3d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = 0
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
nlr = desc_a%get_local_rows()
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),myidx(nlr),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
do i=1,nlr
myidx(i) = i
end do
call psb_loc_to_glob(myidx,desc_a,info)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = ix*deltah
y = iy*deltah
z = iz*deltah
zt(k) = 0.d0
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y,z)*(-val(icoeff))
else
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero,z)*(-val(icoeff))
else
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,dzero)*(-val(icoeff))
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=(2*a1(x,y,z) + 2*a2(x,y,z) + 2*a3(x,y,z))/sqdeltah&
& +c(x,y,z)
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,done)*(-val(icoeff))
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,done,z)*(-val(icoeff))
else
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(done,y,z)*(-val(icoeff))
else
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) &
& call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info)
if (info == psb_success_) call psb_geasb(bv,desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine gen_prob3d

@ -1,41 +0,0 @@
module psb_d_genmat_mod
use psb_base_mod
interface
function d_func_3d(x,y,z) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
end function d_func_3d
end interface
interface
subroutine gen_prob3d(ictxt,idim,a,bv,xv,desc_a,afmt,a1,a2,a3,b1,b2,b3,c,g,info)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = 0
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if a1=a2=a3=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_dspmat_type, psb_d_vect_type, d_func_3d
implicit none
procedure(d_func_3d) :: a1,a2,a3,c,b1,b2,b3,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
end subroutine gen_prob3d
end interface
end module psb_d_genmat_mod

@ -0,0 +1,563 @@
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_d_gen_prob3d(ictxt,idim,a,bv,xv,desc_a,afmt,a1,a2,a3,b1,b2,b3,c,g,info,f)
use psb_base_mod
use psb_d_genpde_mod, psb_protect_name => psb_d_gen_prob3d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
procedure(d_func_3d), optional :: f
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_3d
end if
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
nlr = desc_a%get_local_rows()
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),myidx(nlr),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
do i=1,nlr
myidx(i) = i
end do
call psb_loc_to_glob(myidx,desc_a,info)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = ix*deltah
y = iy*deltah
z = iz*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=2.d0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) &
& call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info)
if (info == psb_success_) call psb_geasb(bv,desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine psb_d_gen_prob3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_d_gen_prob2d(ictxt,idim,a,bv,xv,desc_a,afmt,a1,a2,b1,b2,c,g,info,f)
use psb_base_mod
use psb_d_genpde_mod, psb_protect_name => psb_d_gen_prob2d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_2d) :: b1,b2,c,a1,a2,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
procedure(d_func_2d), optional :: f
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_2d
end if
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim
n = m
nnz = ((n*7)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
nlr = desc_a%get_local_rows()
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),myidx(nlr),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
do i=1,nlr
myidx(i) = i
end do
call psb_loc_to_glob(myidx,desc_a,info)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim)) == 0) then
ix = glob_row/(idim)
else
ix = glob_row/(idim)+1
endif
iy = (glob_row-(ix-1)*idim)
! x, y
x = ix*deltah
y = iy*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=2.d0*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
icol(icoeff) = (ix-1)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,done)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(done,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim+(iy)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) &
& call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info)
if (info == psb_success_) call psb_geasb(bv,desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine psb_d_gen_prob2d

@ -0,0 +1,105 @@
module psb_d_genpde_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero
interface
function d_func_3d(x,y,z) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
end function d_func_3d
end interface
interface psb_gen_prob3d
subroutine psb_d_gen_prob3d(ictxt,idim,a,bv,xv,desc_a,afmt, &
& a1,a2,a3,b1,b2,b3,c,g,info,f)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_dspmat_type, psb_d_vect_type, d_func_3d
implicit none
procedure(d_func_3d) :: a1,a2,a3,c,b1,b2,b3,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
procedure(d_func_3d), optional :: f
end subroutine psb_d_gen_prob3d
end interface
interface
function d_func_2d(x,y) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
end function d_func_2d
end interface
interface psb_gen_prob2d
subroutine psb_d_gen_prob2d(ictxt,idim,a,bv,xv,desc_a,afmt,a1,a2,b1,b2,c,g,info,f)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_dspmat_type, psb_d_vect_type, d_func_2d
implicit none
procedure(d_func_2d) :: a1,a2,c,b1,b2,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
procedure(d_func_2d), optional :: f
end subroutine psb_d_gen_prob2d
end interface
contains
function d_null_func_3d(x,y,z) result(val)
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
val = dzero
end function d_null_func_3d
function d_null_func_2d(x,y) result(val)
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
val = dzero
end function d_null_func_2d
end module psb_d_genpde_mod

@ -0,0 +1,563 @@
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_s_gen_prob3d(ictxt,idim,a,bv,xv,desc_a,afmt,a1,a2,a3,b1,b2,b3,c,g,info,f)
use psb_base_mod
use psb_s_genpde_mod, psb_protect_name => psb_s_gen_prob3d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
procedure(d_func_3d), optional :: f
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=0.e0,one=1.e0,zero=0.e0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_3d
end if
deltah = 1.e0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.e0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
nlr = desc_a%get_local_rows()
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),myidx(nlr),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
do i=1,nlr
myidx(i) = i
end do
call psb_loc_to_glob(myidx,desc_a,info)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = ix*deltah
y = iy*deltah
z = iz*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,szero,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,szero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=2.e0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,sone)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,sone,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(sone,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.e0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) &
& call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info)
if (info == psb_success_) call psb_geasb(bv,desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine psb_s_gen_prob3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_s_gen_prob2d(ictxt,idim,a,bv,xv,desc_a,afmt,a1,a2,b1,b2,c,g,info,f)
use psb_base_mod
use psb_s_genpde_mod, psb_protect_name => psb_s_gen_prob2d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_2d) :: b1,b2,c,a1,a2,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
procedure(d_func_2d), optional :: f
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=0.e0,one=1.e0,zero=0.e0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_2d
end if
deltah = 1.e0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.e0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim
n = m
nnz = ((n*7)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
nlr = desc_a%get_local_rows()
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),myidx(nlr),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
do i=1,nlr
myidx(i) = i
end do
call psb_loc_to_glob(myidx,desc_a,info)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim)) == 0) then
ix = glob_row/(idim)
else
ix = glob_row/(idim)+1
endif
iy = (glob_row-(ix-1)*idim)
! x, y
x = ix*deltah
y = iy*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(szero,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,szero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=2.e0*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
icol(icoeff) = (ix-1)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,sone)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(sone,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim+(iy)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.e0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) &
& call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info)
if (info == psb_success_) call psb_geasb(bv,desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine psb_s_gen_prob2d

@ -0,0 +1,105 @@
module psb_s_genpde_mod
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
& psb_sspmat_type, psb_s_vect_type, szero
interface
function d_func_3d(x,y,z) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
end function d_func_3d
end interface
interface psb_gen_prob3d
subroutine psb_s_gen_prob3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info,f)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_sspmat_type, psb_s_vect_type, d_func_3d
implicit none
procedure(d_func_3d) :: a1,a2,a3,c,b1,b2,b3,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
procedure(d_func_3d), optional :: f
end subroutine psb_s_gen_prob3d
end interface
interface
function d_func_2d(x,y) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
end function d_func_2d
end interface
interface psb_gen_prob2d
subroutine psb_s_gen_prob2d(ictxt,idim,a,bv,xv,desc_a,afmt,a1,a2,b1,b2,c,g,info,f)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_sspmat_type, psb_s_vect_type, d_func_2d
implicit none
procedure(d_func_2d) :: a1,a2,c,b1,b2,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character :: afmt*5
procedure(d_func_2d), optional :: f
end subroutine psb_s_gen_prob2d
end interface
contains
function d_null_func_3d(x,y,z) result(val)
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
val = szero
end function d_null_func_3d
function d_null_func_2d(x,y) result(val)
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
val = szero
end function d_null_func_2d
end module psb_s_genpde_mod

@ -38,6 +38,7 @@ module psb_util_mod
use psb_mmio_mod
use psb_mat_dist_mod
use psb_renum_mod
use psb_d_genmat_mod
use psb_d_genpde_mod
use psb_s_genpde_mod
end module psb_util_mod

Loading…
Cancel
Save