Take away genpde module from util, fold into test.

pull/1/head
Salvatore Filippone 7 years ago
parent b4457f17c9
commit 7d18d330e0

@ -56,52 +56,330 @@
! data distribution. ! data distribution.
! !
module psb_d_pde2d_mod module psb_d_pde2d_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero,&
& psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
interface
function d_func_2d(x,y) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
end function d_func_2d
end interface
interface psb_gen_pde2d
module procedure psb_d_gen_pde2d
end interface psb_gen_pde2d
contains contains
function d_null_func_2d(x,y) result(val)
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
val = dzero
end function d_null_func_2d
! !
! functions parametrizing the differential equation ! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
! !
function b1(x,y) subroutine psb_d_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,&
use psb_base_mod, only : psb_dpk_ & a1,a2,b1,b2,c,g,info,f,amold,vmold,imold,nrl,iv)
real(psb_dpk_) :: b1 use psb_base_mod
real(psb_dpk_), intent(in) :: x,y !
b1=1.d0/sqrt(2.d0) ! Discretizes the partial differential equation
end function b1 !
function b2(x,y) ! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
use psb_base_mod, only : psb_dpk_ ! - ------ - ------ + ----- + ------ + c u = f
real(psb_dpk_) :: b2 ! dxdx dydy dx dy
real(psb_dpk_), intent(in) :: x,y !
b2=1.d0/sqrt(2.d0) ! with Dirichlet boundary conditions
end function b2 ! u = g
function c(x,y) !
use psb_base_mod, only : psb_dpk_ ! on the unit square 0<=x,y<=1.
real(psb_dpk_) :: c !
real(psb_dpk_), intent(in) :: x,y !
c=0.d0 ! Note that if b1=b2=c=0., the PDE is the Laplace equation.
end function c !
function a1(x,y) implicit none
use psb_base_mod, only : psb_dpk_ procedure(d_func_2d) :: b1,b2,c,a1,a2,g
real(psb_dpk_) :: a1 integer(psb_ipk_) :: idim
real(psb_dpk_), intent(in) :: x,y type(psb_dspmat_type) :: a
a1=1.d0/80 type(psb_d_vect_type) :: xv,bv
end function a1 type(psb_desc_type) :: desc_a
function a2(x,y) integer(psb_ipk_) :: ictxt, info
use psb_base_mod, only : psb_dpk_ character(len=*) :: afmt
real(psb_dpk_) :: a2 procedure(d_func_2d), optional :: f
real(psb_dpk_), intent(in) :: x,y class(psb_d_base_sparse_mat), optional :: amold
a2=1.d0/80 class(psb_d_base_vect_type), optional :: vmold
end function a2 class(psb_i_base_vect_type), optional :: imold
function g(x,y) integer(psb_ipk_), optional :: nrl, iv(:)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: g ! Local variables.
real(psb_dpk_), intent(in) :: x,y
g = dzero integer(psb_ipk_), parameter :: nb=20
if (x == done) then type(psb_d_csc_sparse_mat) :: acsc
g = done type(psb_d_coo_sparse_mat) :: acoo
else if (x == dzero) then type(psb_d_csr_sparse_mat) :: acsr
g = exp(-y**2) real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_2d
end if end if
end function g
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim
n = m
nnz = ((n*7)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (.not.present(iv)) then
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
else
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error IV',size(iv),m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
if (present(iv)) then
call psb_cdall(ictxt,desc_a,info,vg=iv)
else
call psb_cdall(ictxt,desc_a,info,nl=nr)
end if
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim)) == 0) then
ix = glob_row/(idim)
else
ix = glob_row/(idim)+1
endif
iy = (glob_row-(ix-1)*idim)
! x, y
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=2.d0*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
icol(icoeff) = (ix-1)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,done)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(done,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim+(iy)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_d_gen_pde2d
end module psb_d_pde2d_mod end module psb_d_pde2d_mod
@ -362,6 +640,51 @@ contains
write(iout,*)' >= 1 do tracing every itrace' write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations ' write(iout,*)' iterations '
end subroutine pr_usage end subroutine pr_usage
!
! functions parametrizing the differential equation
!
function b1(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y
b1=1.d0/sqrt(2.d0)
end function b1
function b2(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y
b2=1.d0/sqrt(2.d0)
end function b2
function c(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y
c=0.d0
end function c
function a1(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y
a1=1.d0/80
end function a1
function a2(x,y)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y
a2=1.d0/80
end function a2
function g(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = exp(-y**2)
end if
end function g
end program psb_d_pde2d end program psb_d_pde2d

@ -56,63 +56,356 @@
! data distribution. ! data distribution.
! !
module psb_d_pde3d_mod module psb_d_pde3d_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero,&
& psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
interface
function d_func_3d(x,y,z) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
end function d_func_3d
end interface
interface psb_gen_pde3d
module procedure psb_d_gen_pde3d
end interface psb_gen_pde3d
contains contains
function d_null_func_3d(x,y,z) result(val)
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
val = dzero
end function d_null_func_3d
! !
! functions parametrizing the differential equation ! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
! !
function b1(x,y,z) subroutine psb_d_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
use psb_base_mod, only : psb_dpk_ & a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl,iv)
real(psb_dpk_) :: b1 use psb_base_mod
real(psb_dpk_), intent(in) :: x,y,z !
b1=1.d0/sqrt(3.d0) ! Discretizes the partial differential equation
end function b1 !
function b2(x,y,z) ! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
use psb_base_mod, only : psb_dpk_ ! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
real(psb_dpk_) :: b2 ! dxdx dydy dzdz dx dy dz
real(psb_dpk_), intent(in) :: x,y,z !
b2=1.d0/sqrt(3.d0) ! with Dirichlet boundary conditions
end function b2 ! u = g
function b3(x,y,z) !
use psb_base_mod, only : psb_dpk_ ! on the unit cube 0<=x,y,z<=1.
real(psb_dpk_) :: b3 !
real(psb_dpk_), intent(in) :: x,y,z !
b3=1.d0/sqrt(3.d0) ! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
end function b3 !
function c(x,y,z) implicit none
use psb_base_mod, only : psb_dpk_ procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
real(psb_dpk_) :: c integer(psb_ipk_) :: idim
real(psb_dpk_), intent(in) :: x,y,z type(psb_dspmat_type) :: a
c=0.d0 type(psb_d_vect_type) :: xv,bv
end function c type(psb_desc_type) :: desc_a
function a1(x,y,z) integer(psb_ipk_) :: ictxt, info
use psb_base_mod, only : psb_dpk_ character(len=*) :: afmt
real(psb_dpk_) :: a1 procedure(d_func_3d), optional :: f
real(psb_dpk_), intent(in) :: x,y,z class(psb_d_base_sparse_mat), optional :: amold
a1=1.d0/80 class(psb_d_base_vect_type), optional :: vmold
end function a1 class(psb_i_base_vect_type), optional :: imold
function a2(x,y,z) integer(psb_ipk_), optional :: nrl,iv(:)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2 ! Local variables.
real(psb_dpk_), intent(in) :: x,y,z
a2=1.d0/80 integer(psb_ipk_), parameter :: nb=20
end function a2 type(psb_d_csc_sparse_mat) :: acsc
function a3(x,y,z) type(psb_d_coo_sparse_mat) :: acoo
use psb_base_mod, only : psb_dpk_ type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: a3 real(psb_dpk_) :: zt(nb),x,y,z
real(psb_dpk_), intent(in) :: x,y,z integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
a3=1.d0/80 integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
end function a3 integer(psb_ipk_) :: np, iam, nr, nt
function g(x,y,z) integer(psb_ipk_) :: icoeff
use psb_base_mod, only : psb_dpk_, done, dzero integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_) :: g real(psb_dpk_), allocatable :: val(:)
real(psb_dpk_), intent(in) :: x,y,z ! deltah dimension of each grid cell
g = dzero ! deltat discretization time
if (x == done) then real(psb_dpk_) :: deltah, sqdeltah, deltah2
g = done real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
else if (x == dzero) then real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
g = exp(y**2-z**2) integer(psb_ipk_) :: err_act
procedure(d_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_3d
end if end if
end function g
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (.not.present(iv)) then
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
else
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error IV',size(iv),m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
if (present(iv)) then
call psb_cdall(ictxt,desc_a,info,vg=iv)
else
call psb_cdall(ictxt,desc_a,info,nl=nr)
end if
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=2.d0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_d_gen_pde3d
end module psb_d_pde3d_mod end module psb_d_pde3d_mod
@ -378,6 +671,62 @@ contains
write(iout,*)' >= 1 do tracing every itrace' write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations ' write(iout,*)' iterations '
end subroutine pr_usage end subroutine pr_usage
!
! functions parametrizing the differential equation
!
function b1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y,z
b1=1.d0/sqrt(3.d0)
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y,z
b2=1.d0/sqrt(3.d0)
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b3
real(psb_dpk_), intent(in) :: x,y,z
b3=1.d0/sqrt(3.d0)
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y,z
c=0.d0
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y,z
a1=1.d0/80
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y,z
a2=1.d0/80
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a3
real(psb_dpk_), intent(in) :: x,y,z
a3=1.d0/80
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y,z
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = exp(y**2-z**2)
end if
end function g
end program psb_d_pde3d end program psb_d_pde3d

@ -56,51 +56,315 @@
! data distribution. ! data distribution.
! !
module psb_s_pde2d_mod module psb_s_pde2d_mod
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
& psb_sspmat_type, psb_s_vect_type, szero,&
& psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
interface
function s_func_2d(x,y) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
end function s_func_2d
end interface
interface psb_gen_pde2d
module procedure psb_s_gen_pde2d
end interface psb_gen_pde2d
contains contains
function s_null_func_2d(x,y) result(val)
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
val = szero
end function s_null_func_2d
! !
! functions parametrizing the differential equation ! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
! !
function b1(x,y) subroutine psb_s_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,&
use psb_base_mod, only : psb_spk_ & a1,a2,b1,b2,c,g,info,f,amold,vmold,imold,nrl)
real(psb_spk_) :: b1 use psb_base_mod
real(psb_spk_), intent(in) :: x,y !
b1=1.e0/sqrt(2.e0) ! Discretizes the partial differential equation
end function b1 !
function b2(x,y) ! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
use psb_base_mod, only : psb_spk_ ! - ------ - ------ + ----- + ------ + c u = f
real(psb_spk_) :: b2 ! dxdx dydy dx dy
real(psb_spk_), intent(in) :: x,y !
b2=1.e0/sqrt(2.e0) ! with Dirichlet boundary conditions
end function b2 ! u = g
function c(x,y) !
use psb_base_mod, only : psb_spk_ ! on the unit square 0<=x,y<=1.
real(psb_spk_) :: c !
real(psb_spk_), intent(in) :: x,y !
c=0.e0 ! Note that if b1=b2=c=0., the PDE is the Laplace equation.
end function c !
function a1(x,y) implicit none
use psb_base_mod, only : psb_spk_ procedure(s_func_2d) :: b1,b2,c,a1,a2,g
real(psb_spk_) :: a1 integer(psb_ipk_) :: idim
real(psb_spk_), intent(in) :: x,y type(psb_sspmat_type) :: a
a1=1.e0/80 type(psb_s_vect_type) :: xv,bv
end function a1 type(psb_desc_type) :: desc_a
function a2(x,y) integer(psb_ipk_) :: ictxt, info
use psb_base_mod, only : psb_spk_ character(len=*) :: afmt
real(psb_spk_) :: a2 procedure(s_func_2d), optional :: f
real(psb_spk_), intent(in) :: x,y class(psb_s_base_sparse_mat), optional :: amold
a2=1.e0/80 class(psb_s_base_vect_type), optional :: vmold
end function a2 class(psb_i_base_vect_type), optional :: imold
function g(x,y) integer(psb_ipk_), optional :: nrl
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: g ! Local variables.
real(psb_spk_), intent(in) :: x,y
g = szero integer(psb_ipk_), parameter :: nb=20
if (x == sone) then type(psb_s_csc_sparse_mat) :: acsc
g = sone type(psb_s_coo_sparse_mat) :: acoo
else if (x == szero) then type(psb_s_csr_sparse_mat) :: acsr
g = exp(-y**2) real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=0.e0,one=1.e0,zero=0.e0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_2d
end if
deltah = 1.e0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.e0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim
n = m
nnz = ((n*7)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if end if
end function g
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim)) == 0) then
ix = glob_row/(idim)
else
ix = glob_row/(idim)+1
endif
iy = (glob_row-(ix-1)*idim)
! x, y
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(szero,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,szero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=2.e0*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
icol(icoeff) = (ix-1)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,sone)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(sone,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim+(iy)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.e0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_s_gen_pde2d
end module psb_s_pde2d_mod end module psb_s_pde2d_mod
@ -360,6 +624,50 @@ contains
write(iout,*)' >= 1 do tracing every itrace' write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations ' write(iout,*)' iterations '
end subroutine pr_usage end subroutine pr_usage
!
! functions parametrizing the differential equation
!
function b1(x,y)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y
b1=1.e0/sqrt(2.e0)
end function b1
function b2(x,y)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y
b2=1.e0/sqrt(2.e0)
end function b2
function c(x,y)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y
c=0.e0
end function c
function a1(x,y)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y
a1=1.e0/80
end function a1
function a2(x,y)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y
a2=1.e0/80
end function a2
function g(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y
g = szero
if (x == sone) then
g = sone
else if (x == szero) then
g = exp(-y**2)
end if
end function g
end program psb_s_pde2d end program psb_s_pde2d

@ -57,64 +57,341 @@
! !
! !
module psb_s_pde3d_mod module psb_s_pde3d_mod
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
& psb_sspmat_type, psb_s_vect_type, szero,&
& psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
interface
function s_func_3d(x,y,z) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
end function s_func_3d
end interface
interface psb_gen_pde3d
module procedure psb_s_gen_pde3d
end interface psb_gen_pde3d
contains contains
! function s_null_func_3d(x,y,z) result(val)
! functions parametrizing the differential equation
!
function b1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y,z
b1=1.e0/sqrt(3.e0)
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y,z
b2=1.e0/sqrt(3.e0)
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b3
real(psb_spk_), intent(in) :: x,y,z
b3=1.e0/sqrt(3.e0)
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y,z
c=0.e0
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y,z
a1=1.e0/80
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y,z
a2=1.e0/80
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a3
real(psb_spk_), intent(in) :: x,y,z
a3=1.e0/80
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y,z real(psb_spk_), intent(in) :: x,y,z
g = szero real(psb_spk_) :: val
if (x == sone) then
g = sone val = szero
else if (x == szero) then
g = exp(y**2-z**2) end function s_null_func_3d
!
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_s_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl)
use psb_base_mod
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(s_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(s_func_3d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=0.e0,one=1.e0,zero=0.e0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_3d
end if end if
end function g
deltah = 1.e0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.e0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,szero,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,szero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=2.e0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,sone)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,sone,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(sone,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.e0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_s_gen_pde3d
end module psb_s_pde3d_mod end module psb_s_pde3d_mod
program psb_s_pde3d program psb_s_pde3d
@ -376,6 +653,63 @@ contains
write(iout,*)' iterations ' write(iout,*)' iterations '
end subroutine pr_usage end subroutine pr_usage
!
! functions parametrizing the differential equation
!
function b1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y,z
b1=1.e0/sqrt(3.e0)
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y,z
b2=1.e0/sqrt(3.e0)
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b3
real(psb_spk_), intent(in) :: x,y,z
b3=1.e0/sqrt(3.e0)
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y,z
c=0.e0
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y,z
a1=1.e0/80
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y,z
a2=1.e0/80
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a3
real(psb_spk_), intent(in) :: x,y,z
a3=1.e0/80
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y,z
g = szero
if (x == sone) then
g = sone
else if (x == szero) then
g = exp(y**2-z**2)
end if
end function g
end program psb_s_pde3d end program psb_s_pde3d

@ -10,7 +10,7 @@ HERE=.
BASEOBJS= psb_blockpart_mod.o psb_metispart_mod.o \ BASEOBJS= psb_blockpart_mod.o psb_metispart_mod.o \
psb_hbio_mod.o psb_mmio_mod.o psb_mat_dist_mod.o \ psb_hbio_mod.o psb_mmio_mod.o psb_mat_dist_mod.o \
psb_s_mat_dist_mod.o psb_d_mat_dist_mod.o psb_c_mat_dist_mod.o psb_z_mat_dist_mod.o \ psb_s_mat_dist_mod.o psb_d_mat_dist_mod.o psb_c_mat_dist_mod.o psb_z_mat_dist_mod.o \
psb_renum_mod.o psb_gps_mod.o psb_d_genpde_mod.o psb_s_genpde_mod.o psb_renum_mod.o psb_gps_mod.o
IMPLOBJS= psb_s_hbio_impl.o psb_d_hbio_impl.o \ IMPLOBJS= psb_s_hbio_impl.o psb_d_hbio_impl.o \
psb_c_hbio_impl.o psb_z_hbio_impl.o \ psb_c_hbio_impl.o psb_z_hbio_impl.o \
psb_s_mmio_impl.o psb_d_mmio_impl.o \ psb_s_mmio_impl.o psb_d_mmio_impl.o \
@ -18,8 +18,8 @@ IMPLOBJS= psb_s_hbio_impl.o psb_d_hbio_impl.o \
psb_s_mat_dist_impl.o psb_d_mat_dist_impl.o \ psb_s_mat_dist_impl.o psb_d_mat_dist_impl.o \
psb_c_mat_dist_impl.o psb_z_mat_dist_impl.o \ psb_c_mat_dist_impl.o psb_z_mat_dist_impl.o \
psb_s_renum_impl.o psb_d_renum_impl.o \ psb_s_renum_impl.o psb_d_renum_impl.o \
psb_c_renum_impl.o psb_z_renum_impl.o \ psb_c_renum_impl.o psb_z_renum_impl.o
psb_d_genpde_impl.o psb_s_genpde_impl.o
MODOBJS=psb_util_mod.o $(BASEOBJS) MODOBJS=psb_util_mod.o $(BASEOBJS)
COBJS=metis_int.o psb_amd_order.o COBJS=metis_int.o psb_amd_order.o
OBJS=$(COBJS) $(MODOBJS) $(IMPLOBJS) OBJS=$(COBJS) $(MODOBJS) $(IMPLOBJS)

@ -1,649 +0,0 @@
!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006, 2010, 2015, 2017
! Salvatore Filippone Cranfield University
! Alfredo Buttari CNRS-IRIT, Toulouse
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_d_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl,iv)
use psb_base_mod
use psb_d_genpde_mod, psb_protect_name => psb_d_gen_pde3d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(d_func_3d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_3d
end if
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (.not.present(iv)) then
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
else
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error IV',size(iv),m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
if (present(iv)) then
call psb_cdall(ictxt,desc_a,info,vg=iv)
else
call psb_cdall(ictxt,desc_a,info,nl=nr)
end if
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=2.d0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_d_gen_pde3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_d_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info,f,amold,vmold,imold,nrl,iv)
use psb_base_mod
use psb_d_genpde_mod, psb_protect_name => psb_d_gen_pde2d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_2d) :: b1,b2,c,a1,a2,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(d_func_2d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl, iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_2d
end if
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim
n = m
nnz = ((n*7)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (.not.present(iv)) then
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
else
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error IV',size(iv),m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
if (present(iv)) then
call psb_cdall(ictxt,desc_a,info,vg=iv)
else
call psb_cdall(ictxt,desc_a,info,nl=nr)
end if
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim)) == 0) then
ix = glob_row/(idim)
else
ix = glob_row/(idim)+1
endif
iy = (glob_row-(ix-1)*idim)
! x, y
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=2.d0*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
icol(icoeff) = (ix-1)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,done)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(done,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim+(iy)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_d_gen_pde2d

@ -1,148 +0,0 @@
!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006, 2010, 2015, 2017
! Salvatore Filippone Cranfield University
! Alfredo Buttari CNRS-IRIT, Toulouse
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
module psb_d_genpde_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero,&
& psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
interface
function d_func_3d(x,y,z) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
end function d_func_3d
end interface
interface psb_gen_pde3d
subroutine psb_d_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt, &
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl,iv)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_dspmat_type, psb_d_vect_type,&
& d_func_3d, psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
implicit none
procedure(d_func_3d) :: a1,a2,a3,c,b1,b2,b3,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(d_func_3d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl,iv(:)
end subroutine psb_d_gen_pde3d
end interface
interface
function d_func_2d(x,y) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
end function d_func_2d
end interface
interface psb_gen_pde2d
subroutine psb_d_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info,f,amold,vmold,imold,nrl,iv)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_dspmat_type, psb_d_vect_type,&
& d_func_2d, psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
implicit none
procedure(d_func_2d) :: a1,a2,c,b1,b2,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(d_func_2d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl,iv(:)
end subroutine psb_d_gen_pde2d
end interface
contains
function d_null_func_3d(x,y,z) result(val)
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
val = dzero
end function d_null_func_3d
function d_null_func_2d(x,y) result(val)
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
val = dzero
end function d_null_func_2d
end module psb_d_genpde_mod

@ -1,619 +0,0 @@
!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006, 2010, 2015, 2017
! Salvatore Filippone Cranfield University
! Alfredo Buttari CNRS-IRIT, Toulouse
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_s_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl)
use psb_base_mod
use psb_s_genpde_mod, psb_protect_name => psb_s_gen_pde3d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(s_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(s_func_3d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=0.e0,one=1.e0,zero=0.e0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_3d
end if
deltah = 1.e0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.e0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,szero,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,szero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=2.e0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,sone)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,sone,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(sone,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.e0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_s_gen_pde3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_s_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info,f,amold,vmold,imold,nrl)
use psb_base_mod
use psb_s_genpde_mod, psb_protect_name => psb_s_gen_pde2d
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(s_func_2d) :: b1,b2,c,a1,a2,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(s_func_2d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=0.e0,one=1.e0,zero=0.e0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_2d
end if
deltah = 1.e0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.e0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim
n = m
nnz = ((n*7)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim)) == 0) then
ix = glob_row/(idim)
else
ix = glob_row/(idim)+1
endif
iy = (glob_row-(ix-1)*idim)
! x, y
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(szero,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,szero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=2.e0*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
icol(icoeff) = (ix-1)*idim+iy
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,sone)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim+(iy+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(sone,y)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim+(iy)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.e0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_s_gen_pde2d

@ -1,148 +0,0 @@
!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006, 2010, 2015, 2017
! Salvatore Filippone Cranfield University
! Alfredo Buttari CNRS-IRIT, Toulouse
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
module psb_s_genpde_mod
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
& psb_sspmat_type, psb_s_vect_type, szero,&
& psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
interface
function s_func_3d(x,y,z) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
end function s_func_3d
end interface
interface psb_gen_pde3d
subroutine psb_s_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_sspmat_type, psb_s_vect_type, &
& s_func_3d, psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
implicit none
procedure(s_func_3d) :: a1,a2,a3,c,b1,b2,b3,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(s_func_3d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl
end subroutine psb_s_gen_pde3d
end interface
interface
function s_func_2d(x,y) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
end function s_func_2d
end interface
interface psb_gen_pde2d
subroutine psb_s_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info,f,amold,vmold,imold,nrl)
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
import :: psb_ipk_, psb_desc_type, psb_sspmat_type, psb_s_vect_type,&
& s_func_2d, psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
implicit none
procedure(s_func_2d) :: a1,a2,c,b1,b2,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(s_func_2d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl
end subroutine psb_s_gen_pde2d
end interface
contains
function s_null_func_3d(x,y,z) result(val)
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
val = szero
end function s_null_func_3d
function s_null_func_2d(x,y) result(val)
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
val = szero
end function s_null_func_2d
end module psb_s_genpde_mod

@ -38,7 +38,7 @@ module psb_util_mod
use psb_mmio_mod use psb_mmio_mod
use psb_mat_dist_mod use psb_mat_dist_mod
use psb_renum_mod use psb_renum_mod
use psb_d_genpde_mod !!$ use psb_d_genpde_mod
use psb_s_genpde_mod !!$ use psb_s_genpde_mod
end module psb_util_mod end module psb_util_mod

Loading…
Cancel
Save