|
|
@ -71,6 +71,70 @@ Scope: {\bf local} \\
|
|
|
|
Type: {\bf required} \\
|
|
|
|
Type: {\bf required} \\
|
|
|
|
An integer value that contains an error code.
|
|
|
|
An integer value that contains an error code.
|
|
|
|
\end{description}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\begin{figure}[h] \begin{center}
|
|
|
|
|
|
|
|
\rotatebox{-90}{\includegraphics[scale=0.45]{figures/try8x8}}
|
|
|
|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\caption{Sample discretization mesh.\label{fig:try8x8}}
|
|
|
|
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
\section*{Example of use}
|
|
|
|
|
|
|
|
Consider the discretization mesh depicted in fig.~\ref{fig:try8x8},
|
|
|
|
|
|
|
|
partitioned among two processes as shown by the dashed line; the data
|
|
|
|
|
|
|
|
distribution is such that each process will own 32 entries in the
|
|
|
|
|
|
|
|
index space, with a halo made of 8 entries placed at local indices 33
|
|
|
|
|
|
|
|
through 40. If process 0 assigns an initial value of 1 to its entries
|
|
|
|
|
|
|
|
in the $x$ vector, and process 1 assigns a value of 2, then after a
|
|
|
|
|
|
|
|
call to \verb|psb_halo| the contents of the local vectors will be the
|
|
|
|
|
|
|
|
following:
|
|
|
|
|
|
|
|
\begin{table}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
|
|
|
\small\begin{tabular}{rrr@{\hspace{6\tabcolsep}}rrr}
|
|
|
|
|
|
|
|
\multicolumn{3}{c}{Process 0}&
|
|
|
|
|
|
|
|
\multicolumn{3}{c}{Process 1}\\
|
|
|
|
|
|
|
|
I & GLOB(I) & X(I) & I & GLOB(I) & X(I) \\
|
|
|
|
|
|
|
|
1 & 1 & 1.0 & 1 & 33 & 2.0 \\
|
|
|
|
|
|
|
|
2 & 2 & 1.0 & 2 & 34 & 2.0 \\
|
|
|
|
|
|
|
|
3 & 3 & 1.0 & 3 & 35 & 2.0 \\
|
|
|
|
|
|
|
|
4 & 4 & 1.0 & 4 & 36 & 2.0 \\
|
|
|
|
|
|
|
|
5 & 5 & 1.0 & 5 & 37 & 2.0 \\
|
|
|
|
|
|
|
|
6 & 6 & 1.0 & 6 & 38 & 2.0 \\
|
|
|
|
|
|
|
|
7 & 7 & 1.0 & 7 & 39 & 2.0 \\
|
|
|
|
|
|
|
|
8 & 8 & 1.0 & 8 & 40 & 2.0 \\
|
|
|
|
|
|
|
|
9 & 9 & 1.0 & 9 & 41 & 2.0 \\
|
|
|
|
|
|
|
|
10 & 10 & 1.0 & 10 & 42 & 2.0 \\
|
|
|
|
|
|
|
|
11 & 11 & 1.0 & 11 & 43 & 2.0 \\
|
|
|
|
|
|
|
|
12 & 12 & 1.0 & 12 & 44 & 2.0 \\
|
|
|
|
|
|
|
|
13 & 13 & 1.0 & 13 & 45 & 2.0 \\
|
|
|
|
|
|
|
|
14 & 14 & 1.0 & 14 & 46 & 2.0 \\
|
|
|
|
|
|
|
|
15 & 15 & 1.0 & 15 & 47 & 2.0 \\
|
|
|
|
|
|
|
|
16 & 16 & 1.0 & 16 & 48 & 2.0 \\
|
|
|
|
|
|
|
|
17 & 17 & 1.0 & 17 & 49 & 2.0 \\
|
|
|
|
|
|
|
|
18 & 18 & 1.0 & 18 & 50 & 2.0 \\
|
|
|
|
|
|
|
|
19 & 19 & 1.0 & 19 & 51 & 2.0 \\
|
|
|
|
|
|
|
|
20 & 20 & 1.0 & 20 & 52 & 2.0 \\
|
|
|
|
|
|
|
|
21 & 21 & 1.0 & 21 & 53 & 2.0 \\
|
|
|
|
|
|
|
|
22 & 22 & 1.0 & 22 & 54 & 2.0 \\
|
|
|
|
|
|
|
|
23 & 23 & 1.0 & 23 & 55 & 2.0 \\
|
|
|
|
|
|
|
|
24 & 24 & 1.0 & 24 & 56 & 2.0 \\
|
|
|
|
|
|
|
|
25 & 25 & 1.0 & 25 & 57 & 2.0 \\
|
|
|
|
|
|
|
|
26 & 26 & 1.0 & 26 & 58 & 2.0 \\
|
|
|
|
|
|
|
|
27 & 27 & 1.0 & 27 & 59 & 2.0 \\
|
|
|
|
|
|
|
|
28 & 28 & 1.0 & 28 & 60 & 2.0 \\
|
|
|
|
|
|
|
|
29 & 29 & 1.0 & 29 & 61 & 2.0 \\
|
|
|
|
|
|
|
|
30 & 30 & 1.0 & 30 & 62 & 2.0 \\
|
|
|
|
|
|
|
|
31 & 31 & 1.0 & 31 & 63 & 2.0 \\
|
|
|
|
|
|
|
|
32 & 32 & 1.0 & 32 & 64 & 2.0 \\
|
|
|
|
|
|
|
|
33 & 33 & 2.0 & 33 & 25 & 1.0 \\
|
|
|
|
|
|
|
|
34 & 34 & 2.0 & 34 & 26 & 1.0 \\
|
|
|
|
|
|
|
|
35 & 35 & 2.0 & 35 & 27 & 1.0 \\
|
|
|
|
|
|
|
|
36 & 36 & 2.0 & 36 & 28 & 1.0 \\
|
|
|
|
|
|
|
|
37 & 37 & 2.0 & 37 & 29 & 1.0 \\
|
|
|
|
|
|
|
|
38 & 38 & 2.0 & 38 & 30 & 1.0 \\
|
|
|
|
|
|
|
|
39 & 39 & 2.0 & 39 & 31 & 1.0 \\
|
|
|
|
|
|
|
|
40 & 40 & 2.0 & 40 & 32 & 1.0 \\
|
|
|
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\end{table}
|
|
|
|
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%
|
|
|
|
%
|
|
|
|
% OVERLAP UPDATE
|
|
|
|
% OVERLAP UPDATE
|
|
|
@ -167,6 +231,84 @@ their instances.
|
|
|
|
%% In the case of a symmetric $K$, this preserves simmetry of the overall
|
|
|
|
%% In the case of a symmetric $K$, this preserves simmetry of the overall
|
|
|
|
%% preconditioner, which would otherwise be destroyed.
|
|
|
|
%% preconditioner, which would otherwise be destroyed.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{figure}[h] \begin{center}
|
|
|
|
|
|
|
|
\rotatebox{-90}{\includegraphics[scale=0.65]{figures/try8x8_ov}}
|
|
|
|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\caption{Sample discretization mesh.\label{fig:try8x8_ov}}
|
|
|
|
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
\section*{Example of use}
|
|
|
|
|
|
|
|
Consider the discretization mesh depicted in fig.~\ref{fig:try8x8_ov},
|
|
|
|
|
|
|
|
partitioned among two processes as shown by the dashed lines, with an
|
|
|
|
|
|
|
|
overlap of 1 extra layer with respect to the partition of
|
|
|
|
|
|
|
|
fig.~\ref{fig:try8x8}; the data
|
|
|
|
|
|
|
|
distribution is such that each process will own 40 entries in the
|
|
|
|
|
|
|
|
index space, with an overlap of 16 entries placed at local indices 25
|
|
|
|
|
|
|
|
through 40; the halo will run from local index 41 through local index 48.. If process 0 assigns an initial value of 1 to its entries
|
|
|
|
|
|
|
|
in the $x$ vector, and process 1 assigns a value of 2, then after a
|
|
|
|
|
|
|
|
call to \verb|psb_ovrl| with \verb|psb_avg_| and a call to
|
|
|
|
|
|
|
|
\verb|psb_halo_| the contents of the local vectors will be the
|
|
|
|
|
|
|
|
following (showing a transition among the two subdomains)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{table}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
|
|
|
\footnotesize
|
|
|
|
|
|
|
|
\begin{tabular}{rrr@{\hspace{6\tabcolsep}}rrr}
|
|
|
|
|
|
|
|
\multicolumn{3}{c}{Process 0}&
|
|
|
|
|
|
|
|
\multicolumn{3}{c}{Process 1}\\
|
|
|
|
|
|
|
|
I & GLOB(I) & X(I) & I & GLOB(I) & X(I) \\
|
|
|
|
|
|
|
|
1 & 1 & 1.0 & 1 & 33 & 1.5 \\
|
|
|
|
|
|
|
|
2 & 2 & 1.0 & 2 & 34 & 1.5 \\
|
|
|
|
|
|
|
|
3 & 3 & 1.0 & 3 & 35 & 1.5 \\
|
|
|
|
|
|
|
|
4 & 4 & 1.0 & 4 & 36 & 1.5 \\
|
|
|
|
|
|
|
|
5 & 5 & 1.0 & 5 & 37 & 1.5 \\
|
|
|
|
|
|
|
|
6 & 6 & 1.0 & 6 & 38 & 1.5 \\
|
|
|
|
|
|
|
|
7 & 7 & 1.0 & 7 & 39 & 1.5 \\
|
|
|
|
|
|
|
|
8 & 8 & 1.0 & 8 & 40 & 1.5 \\
|
|
|
|
|
|
|
|
9 & 9 & 1.0 & 9 & 41 & 2.0 \\
|
|
|
|
|
|
|
|
10 & 10 & 1.0 & 10 & 42 & 2.0 \\
|
|
|
|
|
|
|
|
11 & 11 & 1.0 & 11 & 43 & 2.0 \\
|
|
|
|
|
|
|
|
12 & 12 & 1.0 & 12 & 44 & 2.0 \\
|
|
|
|
|
|
|
|
13 & 13 & 1.0 & 13 & 45 & 2.0 \\
|
|
|
|
|
|
|
|
14 & 14 & 1.0 & 14 & 46 & 2.0 \\
|
|
|
|
|
|
|
|
15 & 15 & 1.0 & 15 & 47 & 2.0 \\
|
|
|
|
|
|
|
|
16 & 16 & 1.0 & 16 & 48 & 2.0 \\
|
|
|
|
|
|
|
|
17 & 17 & 1.0 & 17 & 49 & 2.0 \\
|
|
|
|
|
|
|
|
18 & 18 & 1.0 & 18 & 50 & 2.0 \\
|
|
|
|
|
|
|
|
19 & 19 & 1.0 & 19 & 51 & 2.0 \\
|
|
|
|
|
|
|
|
20 & 20 & 1.0 & 20 & 52 & 2.0 \\
|
|
|
|
|
|
|
|
21 & 21 & 1.0 & 21 & 53 & 2.0 \\
|
|
|
|
|
|
|
|
22 & 22 & 1.0 & 22 & 54 & 2.0 \\
|
|
|
|
|
|
|
|
23 & 23 & 1.0 & 23 & 55 & 2.0 \\
|
|
|
|
|
|
|
|
24 & 24 & 1.0 & 24 & 56 & 2.0 \\
|
|
|
|
|
|
|
|
25 & 25 & 1.5 & 25 & 57 & 2.0 \\
|
|
|
|
|
|
|
|
26 & 26 & 1.5 & 26 & 58 & 2.0 \\
|
|
|
|
|
|
|
|
27 & 27 & 1.5 & 27 & 59 & 2.0 \\
|
|
|
|
|
|
|
|
28 & 28 & 1.5 & 28 & 60 & 2.0 \\
|
|
|
|
|
|
|
|
29 & 29 & 1.5 & 29 & 61 & 2.0 \\
|
|
|
|
|
|
|
|
30 & 30 & 1.5 & 30 & 62 & 2.0 \\
|
|
|
|
|
|
|
|
31 & 31 & 1.5 & 31 & 63 & 2.0 \\
|
|
|
|
|
|
|
|
32 & 32 & 1.5 & 32 & 64 & 2.0 \\
|
|
|
|
|
|
|
|
33 & 33 & 1.5 & 33 & 25 & 1.5 \\
|
|
|
|
|
|
|
|
34 & 34 & 1.5 & 34 & 26 & 1.5 \\
|
|
|
|
|
|
|
|
35 & 35 & 1.5 & 35 & 27 & 1.5 \\
|
|
|
|
|
|
|
|
36 & 36 & 1.5 & 36 & 28 & 1.5 \\
|
|
|
|
|
|
|
|
37 & 37 & 1.5 & 37 & 29 & 1.5 \\
|
|
|
|
|
|
|
|
38 & 38 & 1.5 & 38 & 30 & 1.5 \\
|
|
|
|
|
|
|
|
39 & 39 & 1.5 & 39 & 31 & 1.5 \\
|
|
|
|
|
|
|
|
40 & 40 & 1.5 & 40 & 32 & 1.5 \\
|
|
|
|
|
|
|
|
41 & 41 & 2.0 & 41 & 17 & 1.0 \\
|
|
|
|
|
|
|
|
42 & 42 & 2.0 & 42 & 18 & 1.0 \\
|
|
|
|
|
|
|
|
43 & 43 & 2.0 & 43 & 19 & 1.0 \\
|
|
|
|
|
|
|
|
44 & 44 & 2.0 & 44 & 20 & 1.0 \\
|
|
|
|
|
|
|
|
45 & 45 & 2.0 & 45 & 21 & 1.0 \\
|
|
|
|
|
|
|
|
46 & 46 & 2.0 & 46 & 22 & 1.0 \\
|
|
|
|
|
|
|
|
47 & 47 & 2.0 & 47 & 23 & 1.0 \\
|
|
|
|
|
|
|
|
48 & 48 & 2.0 & 48 & 24 & 1.0 \\
|
|
|
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\end{table}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|