Fixed docs to provide examples of halo & ovrlap.

psblas3-type-indexed
Salvatore Filippone 18 years ago
parent 24b372477d
commit ac77e56aa2

@ -71,6 +71,70 @@ Scope: {\bf local} \\
Type: {\bf required} \\
An integer value that contains an error code.
\end{description}
\begin{figure}[h] \begin{center}
\rotatebox{-90}{\includegraphics[scale=0.45]{figures/try8x8}}
\end{center}
\caption{Sample discretization mesh.\label{fig:try8x8}}
\end{figure}
\section*{Example of use}
Consider the discretization mesh depicted in fig.~\ref{fig:try8x8},
partitioned among two processes as shown by the dashed line; the data
distribution is such that each process will own 32 entries in the
index space, with a halo made of 8 entries placed at local indices 33
through 40. If process 0 assigns an initial value of 1 to its entries
in the $x$ vector, and process 1 assigns a value of 2, then after a
call to \verb|psb_halo| the contents of the local vectors will be the
following:
\begin{table}
\begin{center}
\small\begin{tabular}{rrr@{\hspace{6\tabcolsep}}rrr}
\multicolumn{3}{c}{Process 0}&
\multicolumn{3}{c}{Process 1}\\
I & GLOB(I) & X(I) & I & GLOB(I) & X(I) \\
1 & 1 & 1.0 & 1 & 33 & 2.0 \\
2 & 2 & 1.0 & 2 & 34 & 2.0 \\
3 & 3 & 1.0 & 3 & 35 & 2.0 \\
4 & 4 & 1.0 & 4 & 36 & 2.0 \\
5 & 5 & 1.0 & 5 & 37 & 2.0 \\
6 & 6 & 1.0 & 6 & 38 & 2.0 \\
7 & 7 & 1.0 & 7 & 39 & 2.0 \\
8 & 8 & 1.0 & 8 & 40 & 2.0 \\
9 & 9 & 1.0 & 9 & 41 & 2.0 \\
10 & 10 & 1.0 & 10 & 42 & 2.0 \\
11 & 11 & 1.0 & 11 & 43 & 2.0 \\
12 & 12 & 1.0 & 12 & 44 & 2.0 \\
13 & 13 & 1.0 & 13 & 45 & 2.0 \\
14 & 14 & 1.0 & 14 & 46 & 2.0 \\
15 & 15 & 1.0 & 15 & 47 & 2.0 \\
16 & 16 & 1.0 & 16 & 48 & 2.0 \\
17 & 17 & 1.0 & 17 & 49 & 2.0 \\
18 & 18 & 1.0 & 18 & 50 & 2.0 \\
19 & 19 & 1.0 & 19 & 51 & 2.0 \\
20 & 20 & 1.0 & 20 & 52 & 2.0 \\
21 & 21 & 1.0 & 21 & 53 & 2.0 \\
22 & 22 & 1.0 & 22 & 54 & 2.0 \\
23 & 23 & 1.0 & 23 & 55 & 2.0 \\
24 & 24 & 1.0 & 24 & 56 & 2.0 \\
25 & 25 & 1.0 & 25 & 57 & 2.0 \\
26 & 26 & 1.0 & 26 & 58 & 2.0 \\
27 & 27 & 1.0 & 27 & 59 & 2.0 \\
28 & 28 & 1.0 & 28 & 60 & 2.0 \\
29 & 29 & 1.0 & 29 & 61 & 2.0 \\
30 & 30 & 1.0 & 30 & 62 & 2.0 \\
31 & 31 & 1.0 & 31 & 63 & 2.0 \\
32 & 32 & 1.0 & 32 & 64 & 2.0 \\
33 & 33 & 2.0 & 33 & 25 & 1.0 \\
34 & 34 & 2.0 & 34 & 26 & 1.0 \\
35 & 35 & 2.0 & 35 & 27 & 1.0 \\
36 & 36 & 2.0 & 36 & 28 & 1.0 \\
37 & 37 & 2.0 & 37 & 29 & 1.0 \\
38 & 38 & 2.0 & 38 & 30 & 1.0 \\
39 & 39 & 2.0 & 39 & 31 & 1.0 \\
40 & 40 & 2.0 & 40 & 32 & 1.0 \\
\end{tabular}
\end{center}
\end{table}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% OVERLAP UPDATE
@ -168,6 +232,84 @@ their instances.
%% preconditioner, which would otherwise be destroyed.
\end{enumerate}
\begin{figure}[h] \begin{center}
\rotatebox{-90}{\includegraphics[scale=0.65]{figures/try8x8_ov}}
\end{center}
\caption{Sample discretization mesh.\label{fig:try8x8_ov}}
\end{figure}
\section*{Example of use}
Consider the discretization mesh depicted in fig.~\ref{fig:try8x8_ov},
partitioned among two processes as shown by the dashed lines, with an
overlap of 1 extra layer with respect to the partition of
fig.~\ref{fig:try8x8}; the data
distribution is such that each process will own 40 entries in the
index space, with an overlap of 16 entries placed at local indices 25
through 40; the halo will run from local index 41 through local index 48.. If process 0 assigns an initial value of 1 to its entries
in the $x$ vector, and process 1 assigns a value of 2, then after a
call to \verb|psb_ovrl| with \verb|psb_avg_| and a call to
\verb|psb_halo_| the contents of the local vectors will be the
following (showing a transition among the two subdomains)
\begin{table}
\begin{center}
\footnotesize
\begin{tabular}{rrr@{\hspace{6\tabcolsep}}rrr}
\multicolumn{3}{c}{Process 0}&
\multicolumn{3}{c}{Process 1}\\
I & GLOB(I) & X(I) & I & GLOB(I) & X(I) \\
1 & 1 & 1.0 & 1 & 33 & 1.5 \\
2 & 2 & 1.0 & 2 & 34 & 1.5 \\
3 & 3 & 1.0 & 3 & 35 & 1.5 \\
4 & 4 & 1.0 & 4 & 36 & 1.5 \\
5 & 5 & 1.0 & 5 & 37 & 1.5 \\
6 & 6 & 1.0 & 6 & 38 & 1.5 \\
7 & 7 & 1.0 & 7 & 39 & 1.5 \\
8 & 8 & 1.0 & 8 & 40 & 1.5 \\
9 & 9 & 1.0 & 9 & 41 & 2.0 \\
10 & 10 & 1.0 & 10 & 42 & 2.0 \\
11 & 11 & 1.0 & 11 & 43 & 2.0 \\
12 & 12 & 1.0 & 12 & 44 & 2.0 \\
13 & 13 & 1.0 & 13 & 45 & 2.0 \\
14 & 14 & 1.0 & 14 & 46 & 2.0 \\
15 & 15 & 1.0 & 15 & 47 & 2.0 \\
16 & 16 & 1.0 & 16 & 48 & 2.0 \\
17 & 17 & 1.0 & 17 & 49 & 2.0 \\
18 & 18 & 1.0 & 18 & 50 & 2.0 \\
19 & 19 & 1.0 & 19 & 51 & 2.0 \\
20 & 20 & 1.0 & 20 & 52 & 2.0 \\
21 & 21 & 1.0 & 21 & 53 & 2.0 \\
22 & 22 & 1.0 & 22 & 54 & 2.0 \\
23 & 23 & 1.0 & 23 & 55 & 2.0 \\
24 & 24 & 1.0 & 24 & 56 & 2.0 \\
25 & 25 & 1.5 & 25 & 57 & 2.0 \\
26 & 26 & 1.5 & 26 & 58 & 2.0 \\
27 & 27 & 1.5 & 27 & 59 & 2.0 \\
28 & 28 & 1.5 & 28 & 60 & 2.0 \\
29 & 29 & 1.5 & 29 & 61 & 2.0 \\
30 & 30 & 1.5 & 30 & 62 & 2.0 \\
31 & 31 & 1.5 & 31 & 63 & 2.0 \\
32 & 32 & 1.5 & 32 & 64 & 2.0 \\
33 & 33 & 1.5 & 33 & 25 & 1.5 \\
34 & 34 & 1.5 & 34 & 26 & 1.5 \\
35 & 35 & 1.5 & 35 & 27 & 1.5 \\
36 & 36 & 1.5 & 36 & 28 & 1.5 \\
37 & 37 & 1.5 & 37 & 29 & 1.5 \\
38 & 38 & 1.5 & 38 & 30 & 1.5 \\
39 & 39 & 1.5 & 39 & 31 & 1.5 \\
40 & 40 & 1.5 & 40 & 32 & 1.5 \\
41 & 41 & 2.0 & 41 & 17 & 1.0 \\
42 & 42 & 2.0 & 42 & 18 & 1.0 \\
43 & 43 & 2.0 & 43 & 19 & 1.0 \\
44 & 44 & 2.0 & 44 & 20 & 1.0 \\
45 & 45 & 2.0 & 45 & 21 & 1.0 \\
46 & 46 & 2.0 & 46 & 22 & 1.0 \\
47 & 47 & 2.0 & 47 & 23 & 1.0 \\
48 & 48 & 2.0 & 48 & 24 & 1.0 \\
\end{tabular}
\end{center}
\end{table}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%

Loading…
Cancel
Save