|
|
|
@ -39,7 +39,7 @@
|
|
|
|
|
! The PDE is a general second order equation in 3d
|
|
|
|
|
!
|
|
|
|
|
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
|
|
|
|
|
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0
|
|
|
|
|
! - ------ - ------ - ------ + ----- + ------ + ------ + a4 u = 0
|
|
|
|
|
! dxdx dydy dzdz dx dy dz
|
|
|
|
|
!
|
|
|
|
|
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
|
|
|
|
@ -194,8 +194,8 @@ program ppde
|
|
|
|
|
call psb_barrier(ictxt)
|
|
|
|
|
t2 = psb_wtime() - t1
|
|
|
|
|
call psb_amx(ictxt,t2)
|
|
|
|
|
amatsize = psb_sizeof(a)
|
|
|
|
|
descsize = psb_sizeof(desc_a)
|
|
|
|
|
amatsize = a%sizeof()
|
|
|
|
|
descsize = desc_a%sizeof()
|
|
|
|
|
precsize = psb_sizeof(prec)
|
|
|
|
|
call psb_sum(ictxt,amatsize)
|
|
|
|
|
call psb_sum(ictxt,descsize)
|
|
|
|
@ -364,7 +364,7 @@ contains
|
|
|
|
|
! discretize the partial diferential equation
|
|
|
|
|
!
|
|
|
|
|
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
|
|
|
|
|
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u
|
|
|
|
|
! - ------ - ------ - ------ + ----- + ------ + ------ + a4 u
|
|
|
|
|
! dxdx dydy dzdz dx dy dz
|
|
|
|
|
!
|
|
|
|
|
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
|
|
|
|
@ -398,7 +398,7 @@ contains
|
|
|
|
|
real(psb_dpk_), allocatable :: val(:)
|
|
|
|
|
! deltah dimension of each grid cell
|
|
|
|
|
! deltat discretization time
|
|
|
|
|
real(psb_dpk_) :: deltah, deltah2
|
|
|
|
|
real(psb_dpk_) :: deltah, sqdeltah, deltah2
|
|
|
|
|
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
|
|
|
|
|
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen
|
|
|
|
|
real(psb_dpk_) :: a1, a2, a3, a4, b1, b2, b3
|
|
|
|
@ -414,7 +414,8 @@ contains
|
|
|
|
|
call psb_info(ictxt, iam, np)
|
|
|
|
|
|
|
|
|
|
deltah = 1.d0/(idim-1)
|
|
|
|
|
deltah2 = deltah*deltah
|
|
|
|
|
sqdeltah = deltah*deltah
|
|
|
|
|
deltah2 = 2.d0* deltah
|
|
|
|
|
|
|
|
|
|
! initialize array descriptor and sparse matrix storage. provide an
|
|
|
|
|
! estimate of the number of non zeroes
|
|
|
|
@ -506,66 +507,66 @@ contains
|
|
|
|
|
! term depending on (x-1,y,z)
|
|
|
|
|
!
|
|
|
|
|
if (ix == 1) then
|
|
|
|
|
val(element) = -b1(x,y,z)/deltah2-a1(x,y,z)/deltah
|
|
|
|
|
val(element) = -b1(x,y,z)/sqdeltah-a1(x,y,z)/deltah2
|
|
|
|
|
zt(k) = exp(-x**2-y**2-z**2)*(-val(element))
|
|
|
|
|
else
|
|
|
|
|
val(element) = -b1(x,y,z)/deltah2-a1(x,y,z)/deltah
|
|
|
|
|
val(element) = -b1(x,y,z)/sqdeltah-a1(x,y,z)/deltah2
|
|
|
|
|
icol(element) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
|
|
|
|
|
irow(element) = glob_row
|
|
|
|
|
element = element+1
|
|
|
|
|
endif
|
|
|
|
|
! term depending on (x,y-1,z)
|
|
|
|
|
if (iy == 1) then
|
|
|
|
|
val(element) = -b2(x,y,z)/deltah2-a2(x,y,z)/deltah
|
|
|
|
|
val(element) = -b2(x,y,z)/sqdeltah-a2(x,y,z)/deltah2
|
|
|
|
|
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
|
|
|
|
|
else
|
|
|
|
|
val(element) = -b2(x,y,z)/deltah2-a2(x,y,z)/deltah
|
|
|
|
|
val(element) = -b2(x,y,z)/sqdeltah-a2(x,y,z)/deltah2
|
|
|
|
|
icol(element) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
|
|
|
|
|
irow(element) = glob_row
|
|
|
|
|
element = element+1
|
|
|
|
|
endif
|
|
|
|
|
! term depending on (x,y,z-1)
|
|
|
|
|
if (iz == 1) then
|
|
|
|
|
val(element)=-b3(x,y,z)/deltah2-a3(x,y,z)/deltah
|
|
|
|
|
val(element)=-b3(x,y,z)/sqdeltah-a3(x,y,z)/deltah2
|
|
|
|
|
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
|
|
|
|
|
else
|
|
|
|
|
val(element)=-b3(x,y,z)/deltah2-a3(x,y,z)/deltah
|
|
|
|
|
val(element)=-b3(x,y,z)/sqdeltah-a3(x,y,z)/deltah2
|
|
|
|
|
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
|
|
|
|
|
irow(element) = glob_row
|
|
|
|
|
element = element+1
|
|
|
|
|
endif
|
|
|
|
|
! term depending on (x,y,z)
|
|
|
|
|
val(element)=(2*b1(x,y,z) + 2*b2(x,y,z) + 2*b3(x,y,z))/deltah2&
|
|
|
|
|
& + (a1(x,y,z) + a2(x,y,z) + a3(x,y,z)+ a4(x,y,z))/deltah
|
|
|
|
|
val(element)=(2*b1(x,y,z) + 2*b2(x,y,z) + 2*b3(x,y,z))/sqdeltah&
|
|
|
|
|
& +a4(x,y,z)
|
|
|
|
|
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
|
|
|
|
|
irow(element) = glob_row
|
|
|
|
|
element = element+1
|
|
|
|
|
! term depending on (x,y,z+1)
|
|
|
|
|
if (iz == idim) then
|
|
|
|
|
val(element)=-b1(x,y,z)/deltah2
|
|
|
|
|
val(element)=-b3(x,y,z)/sqdeltah+a3(x,y,z)/deltah2
|
|
|
|
|
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
|
|
|
|
|
else
|
|
|
|
|
val(element)=-b1(x,y,z)/deltah2
|
|
|
|
|
val(element)=-b3(x,y,z)/sqdeltah+a3(x,y,z)/deltah2
|
|
|
|
|
icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
|
|
|
|
|
irow(element) = glob_row
|
|
|
|
|
element = element+1
|
|
|
|
|
endif
|
|
|
|
|
! term depending on (x,y+1,z)
|
|
|
|
|
if (iy == idim) then
|
|
|
|
|
val(element)=-b2(x,y,z)/deltah2
|
|
|
|
|
val(element)=-b2(x,y,z)/sqdeltah+a2(x,y,z)/deltah2
|
|
|
|
|
zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))
|
|
|
|
|
else
|
|
|
|
|
val(element)=-b2(x,y,z)/deltah2
|
|
|
|
|
val(element)=-b2(x,y,z)/sqdeltah+a2(x,y,z)/deltah2
|
|
|
|
|
icol(element) = (ix-1)*idim*idim+(iy)*idim+(iz)
|
|
|
|
|
irow(element) = glob_row
|
|
|
|
|
element = element+1
|
|
|
|
|
endif
|
|
|
|
|
! term depending on (x+1,y,z)
|
|
|
|
|
if (ix==idim) then
|
|
|
|
|
val(element)=-b3(x,y,z)/deltah2
|
|
|
|
|
val(element)=-b1(x,y,z)/sqdeltah+a1(x,y,z)/deltah2
|
|
|
|
|
zt(k) = exp(-y**2-z**2)*exp(-x)*(-val(element))
|
|
|
|
|
else
|
|
|
|
|
val(element)=-b3(x,y,z)/deltah2
|
|
|
|
|
val(element)=-b1(x,y,z)/sqdeltah+a1(x,y,z)/deltah2
|
|
|
|
|
icol(element) = (ix)*idim*idim+(iy-1)*idim+(iz)
|
|
|
|
|
irow(element) = glob_row
|
|
|
|
|
element = element+1
|
|
|
|
@ -648,43 +649,43 @@ function a1(x,y,z)
|
|
|
|
|
use psb_base_mod, only : psb_dpk_
|
|
|
|
|
real(psb_dpk_) :: a1
|
|
|
|
|
real(psb_dpk_) :: x,y,z
|
|
|
|
|
a1=1.d0
|
|
|
|
|
a1=1.414d0
|
|
|
|
|
end function a1
|
|
|
|
|
function a2(x,y,z)
|
|
|
|
|
use psb_base_mod, only : psb_dpk_
|
|
|
|
|
real(psb_dpk_) :: a2
|
|
|
|
|
real(psb_dpk_) :: x,y,z
|
|
|
|
|
a2=2.d1*y
|
|
|
|
|
a2=1.414d0
|
|
|
|
|
end function a2
|
|
|
|
|
function a3(x,y,z)
|
|
|
|
|
use psb_base_mod, only : psb_dpk_
|
|
|
|
|
real(psb_dpk_) :: a3
|
|
|
|
|
real(psb_dpk_) :: x,y,z
|
|
|
|
|
a3=1.d0
|
|
|
|
|
a3=1.414d0
|
|
|
|
|
end function a3
|
|
|
|
|
function a4(x,y,z)
|
|
|
|
|
use psb_base_mod, only : psb_dpk_
|
|
|
|
|
real(psb_dpk_) :: a4
|
|
|
|
|
real(psb_dpk_) :: x,y,z
|
|
|
|
|
a4=1.d0
|
|
|
|
|
a4=0.d0
|
|
|
|
|
end function a4
|
|
|
|
|
function b1(x,y,z)
|
|
|
|
|
use psb_base_mod, only : psb_dpk_
|
|
|
|
|
real(psb_dpk_) :: b1
|
|
|
|
|
real(psb_dpk_) :: x,y,z
|
|
|
|
|
b1=1.d0
|
|
|
|
|
b1=1.d0/80
|
|
|
|
|
end function b1
|
|
|
|
|
function b2(x,y,z)
|
|
|
|
|
use psb_base_mod, only : psb_dpk_
|
|
|
|
|
real(psb_dpk_) :: b2
|
|
|
|
|
real(psb_dpk_) :: x,y,z
|
|
|
|
|
b2=1.d0
|
|
|
|
|
b2=1.d0/80
|
|
|
|
|
end function b2
|
|
|
|
|
function b3(x,y,z)
|
|
|
|
|
use psb_base_mod, only : psb_dpk_
|
|
|
|
|
real(psb_dpk_) :: b3
|
|
|
|
|
real(psb_dpk_) :: x,y,z
|
|
|
|
|
b3=1.d0
|
|
|
|
|
b3=1.d0/80
|
|
|
|
|
end function b3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|