|
|
|
@ -26,7 +26,6 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real & psb\_geaxpby \\
|
|
|
|
|
Long Precision Real & psb\_geaxpby \\
|
|
|
|
|
Long Precision Complex & psb\_geaxpby \\
|
|
|
|
|
\hline
|
|
|
|
@ -107,7 +106,7 @@ An integer value that contains an error code.
|
|
|
|
|
|
|
|
|
|
This function computes dot product between two vectors $x$ and
|
|
|
|
|
$y$.\\
|
|
|
|
|
If $x$ and $y$ are double precision real or single precision real vectors
|
|
|
|
|
If $x$ and $y$ are double precision real vectors
|
|
|
|
|
computes dot-product as:
|
|
|
|
|
\[dot \leftarrow x^T y\]
|
|
|
|
|
Else if $x$ and $y$ are double precision complex vectors then computes dot-product as:
|
|
|
|
@ -126,7 +125,6 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$dot$, $x$, $y$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real & psb\_gedot\\
|
|
|
|
|
Long Precision Real & psb\_gedot \\
|
|
|
|
|
Long Precision Complex & psb\_gedot \\
|
|
|
|
|
\hline
|
|
|
|
@ -201,7 +199,6 @@ is a rank one array.
|
|
|
|
|
\hline
|
|
|
|
|
$res$, $x$, $y$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real & psb\_gedot\\
|
|
|
|
|
Long Precision Real & psb\_gedot \\
|
|
|
|
|
Long Precision Complex & psb\_gedot \\
|
|
|
|
|
\hline
|
|
|
|
@ -252,10 +249,10 @@ An integer value that contains an error code.
|
|
|
|
|
|
|
|
|
|
This function computes
|
|
|
|
|
the infinity-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is double precision real or single precision real vector
|
|
|
|
|
If $x$ is a double precision real vector
|
|
|
|
|
computes infinity norm as:
|
|
|
|
|
\[ amax \leftarrow \max_i |x_i|\]
|
|
|
|
|
else if $x$ is double precision complex vector then computes infinity-norm as:
|
|
|
|
|
else if $x$ is a double precision complex vector then computes infinity-norm as:
|
|
|
|
|
\[ amax \leftarrow \max_i {(|re(x_i)| + |im(x_i)|)}\]
|
|
|
|
|
where:
|
|
|
|
|
\begin{description}
|
|
|
|
@ -271,7 +268,6 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$amax$ & $x$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real&Single Precision Real & psb\_geamax\\
|
|
|
|
|
Long Precision Real&Long Precision Real & psb\_geamax \\
|
|
|
|
|
Long Precision Real&Long Precision Complex & psb\_geamax \\
|
|
|
|
|
\hline
|
|
|
|
@ -330,7 +326,6 @@ a dense matrix $x$:
|
|
|
|
|
\hline
|
|
|
|
|
$res$& $x$& {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real &Single Precision Real & psb\_geamax\\
|
|
|
|
|
Long Precision Real &Long Precision Real & psb\_geamax\\
|
|
|
|
|
Long Precision Real &Long Precision Complex & psb\_geamax\\
|
|
|
|
|
\hline
|
|
|
|
@ -373,7 +368,7 @@ An integer value that contains an error code.
|
|
|
|
|
\subroutine{psb\_geasum}{1-Norm of Vector}
|
|
|
|
|
|
|
|
|
|
This function computes the 1-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is double precision real or single precision real vector
|
|
|
|
|
If $x$ is a double precision real vector
|
|
|
|
|
computes 1-norm as:
|
|
|
|
|
\[ asum \leftarrow \|x_i\|\]
|
|
|
|
|
else if $x$ ic double precision complex vector then computes 1-norm as:
|
|
|
|
@ -392,7 +387,6 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$dot$, $x$, $y$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real & psb\_geasum\\
|
|
|
|
|
Long Precision Real & psb\_geasum \\
|
|
|
|
|
Long Precision Complex & psb\_geasum \\
|
|
|
|
|
\hline
|
|
|
|
@ -443,7 +437,7 @@ An integer value that contains an error code.
|
|
|
|
|
\subroutine {psb\_genrm2}{2-Norm of Vector}
|
|
|
|
|
|
|
|
|
|
This function computes the 2-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is double precision real or single precision real vector
|
|
|
|
|
If $x$ is a double precision real vector
|
|
|
|
|
computes 2-norm as:
|
|
|
|
|
\[ nrm2 \leftarrow \sqrt{x^T x}\]
|
|
|
|
|
else if $x$ is double precision complex vector then computes 2-norm as:
|
|
|
|
@ -459,7 +453,6 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$nrm2$, $x$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real & psb\_genrm2\\
|
|
|
|
|
Long Precision Real & psb\_genrm2 \\
|
|
|
|
|
Long Precision Complex & psb\_genrm2 \\
|
|
|
|
|
\hline
|
|
|
|
@ -525,7 +518,6 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$nrmi$, $A$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real & psb\_spnrmi\\
|
|
|
|
|
Long Precision Real & psb\_spnrmi \\
|
|
|
|
|
Long Precision Complex & psb\_spnrmi \\
|
|
|
|
|
\hline
|
|
|
|
@ -596,7 +588,6 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$A$, $x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real & psb\_spmm\\
|
|
|
|
|
Long Precision Real & psb\_spmm \\
|
|
|
|
|
Long Precision Complex & psb\_spmm \\
|
|
|
|
|
\hline
|
|
|
|
@ -736,7 +727,6 @@ trans, unit, choice, diag, n, jx, jy, work}
|
|
|
|
|
\hline
|
|
|
|
|
$T$, $x$, $y$, $D$, $\alpha$, $\beta$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Single Precision Real & psb\_spsm\\
|
|
|
|
|
Long Precision Real & psb\_spsm \\
|
|
|
|
|
Long Precision Complex & psb\_spsm \\
|
|
|
|
|
\hline
|
|
|
|
|