*** empty log message ***

psblas3-type-indexed
Salvatore Filippone 19 years ago
parent 4adaeaf5d5
commit f26e98de35

@ -23,7 +23,6 @@ where:
\hline \hline
$\alpha$, $x$ & {\bf Subroutine}\\ $\alpha$, $x$ & {\bf Subroutine}\\
\hline \hline
Single Precision Real & psb\_halo\\
Long Precision Real & psb\_halo \\ Long Precision Real & psb\_halo \\
Long Precision Complex & psb\_halo \\ Long Precision Complex & psb\_halo \\
\hline \hline
@ -96,7 +95,6 @@ operators $ P_a$ and $ P^{T}$.
\hline \hline
$x$ & {\bf Subroutine}\\ $x$ & {\bf Subroutine}\\
\hline \hline
Single Precision Real & psb\_ovrl\\
Long Precision Real & psb\_ovrl \\ Long Precision Real & psb\_ovrl \\
Long Precision Complex & psb\_ovrl \\ Long Precision Complex & psb\_ovrl \\
\hline \hline
@ -205,7 +203,6 @@ process $i$.
\hline \hline
$x_i, y$ & {\bf Subroutine}\\ $x_i, y$ & {\bf Subroutine}\\
\hline \hline
Single Precision Real & psb\_gather\\
Long Precision Real & psb\_gather \\ Long Precision Real & psb\_gather \\
Long Precision Complex & psb\_gather \\ Long Precision Complex & psb\_gather \\
\hline \hline
@ -297,7 +294,6 @@ process $i$.
\hline \hline
$x_i, y$ & {\bf Subroutine}\\ $x_i, y$ & {\bf Subroutine}\\
\hline \hline
Single Precision Real & psb\_scatter\\
Long Precision Real & psb\_scatter \\ Long Precision Real & psb\_scatter \\
Long Precision Complex & psb\_scatter \\ Long Precision Complex & psb\_scatter \\
\hline \hline

@ -26,7 +26,6 @@ where:
\hline \hline
$x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\ $x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\
\hline \hline
Single Precision Real & psb\_geaxpby \\
Long Precision Real & psb\_geaxpby \\ Long Precision Real & psb\_geaxpby \\
Long Precision Complex & psb\_geaxpby \\ Long Precision Complex & psb\_geaxpby \\
\hline \hline
@ -107,7 +106,7 @@ An integer value that contains an error code.
This function computes dot product between two vectors $x$ and This function computes dot product between two vectors $x$ and
$y$.\\ $y$.\\
If $x$ and $y$ are double precision real or single precision real vectors If $x$ and $y$ are double precision real vectors
computes dot-product as: computes dot-product as:
\[dot \leftarrow x^T y\] \[dot \leftarrow x^T y\]
Else if $x$ and $y$ are double precision complex vectors then computes dot-product as: Else if $x$ and $y$ are double precision complex vectors then computes dot-product as:
@ -126,7 +125,6 @@ where:
\hline \hline
$dot$, $x$, $y$ & {\bf Function}\\ $dot$, $x$, $y$ & {\bf Function}\\
\hline \hline
Single Precision Real & psb\_gedot\\
Long Precision Real & psb\_gedot \\ Long Precision Real & psb\_gedot \\
Long Precision Complex & psb\_gedot \\ Long Precision Complex & psb\_gedot \\
\hline \hline
@ -201,7 +199,6 @@ is a rank one array.
\hline \hline
$res$, $x$, $y$ & {\bf Subroutine}\\ $res$, $x$, $y$ & {\bf Subroutine}\\
\hline \hline
Single Precision Real & psb\_gedot\\
Long Precision Real & psb\_gedot \\ Long Precision Real & psb\_gedot \\
Long Precision Complex & psb\_gedot \\ Long Precision Complex & psb\_gedot \\
\hline \hline
@ -252,10 +249,10 @@ An integer value that contains an error code.
This function computes This function computes
the infinity-norm of a vector $x$.\\ the infinity-norm of a vector $x$.\\
If $x$ is double precision real or single precision real vector If $x$ is a double precision real vector
computes infinity norm as: computes infinity norm as:
\[ amax \leftarrow \max_i |x_i|\] \[ amax \leftarrow \max_i |x_i|\]
else if $x$ is double precision complex vector then computes infinity-norm as: else if $x$ is a double precision complex vector then computes infinity-norm as:
\[ amax \leftarrow \max_i {(|re(x_i)| + |im(x_i)|)}\] \[ amax \leftarrow \max_i {(|re(x_i)| + |im(x_i)|)}\]
where: where:
\begin{description} \begin{description}
@ -271,7 +268,6 @@ where:
\hline \hline
$amax$ & $x$ & {\bf Function}\\ $amax$ & $x$ & {\bf Function}\\
\hline \hline
Single Precision Real&Single Precision Real & psb\_geamax\\
Long Precision Real&Long Precision Real & psb\_geamax \\ Long Precision Real&Long Precision Real & psb\_geamax \\
Long Precision Real&Long Precision Complex & psb\_geamax \\ Long Precision Real&Long Precision Complex & psb\_geamax \\
\hline \hline
@ -330,7 +326,6 @@ a dense matrix $x$:
\hline \hline
$res$& $x$& {\bf Subroutine}\\ $res$& $x$& {\bf Subroutine}\\
\hline \hline
Single Precision Real &Single Precision Real & psb\_geamax\\
Long Precision Real &Long Precision Real & psb\_geamax\\ Long Precision Real &Long Precision Real & psb\_geamax\\
Long Precision Real &Long Precision Complex & psb\_geamax\\ Long Precision Real &Long Precision Complex & psb\_geamax\\
\hline \hline
@ -373,7 +368,7 @@ An integer value that contains an error code.
\subroutine{psb\_geasum}{1-Norm of Vector} \subroutine{psb\_geasum}{1-Norm of Vector}
This function computes the 1-norm of a vector $x$.\\ This function computes the 1-norm of a vector $x$.\\
If $x$ is double precision real or single precision real vector If $x$ is a double precision real vector
computes 1-norm as: computes 1-norm as:
\[ asum \leftarrow \|x_i\|\] \[ asum \leftarrow \|x_i\|\]
else if $x$ ic double precision complex vector then computes 1-norm as: else if $x$ ic double precision complex vector then computes 1-norm as:
@ -392,7 +387,6 @@ where:
\hline \hline
$dot$, $x$, $y$ & {\bf Function}\\ $dot$, $x$, $y$ & {\bf Function}\\
\hline \hline
Single Precision Real & psb\_geasum\\
Long Precision Real & psb\_geasum \\ Long Precision Real & psb\_geasum \\
Long Precision Complex & psb\_geasum \\ Long Precision Complex & psb\_geasum \\
\hline \hline
@ -443,7 +437,7 @@ An integer value that contains an error code.
\subroutine {psb\_genrm2}{2-Norm of Vector} \subroutine {psb\_genrm2}{2-Norm of Vector}
This function computes the 2-norm of a vector $x$.\\ This function computes the 2-norm of a vector $x$.\\
If $x$ is double precision real or single precision real vector If $x$ is a double precision real vector
computes 2-norm as: computes 2-norm as:
\[ nrm2 \leftarrow \sqrt{x^T x}\] \[ nrm2 \leftarrow \sqrt{x^T x}\]
else if $x$ is double precision complex vector then computes 2-norm as: else if $x$ is double precision complex vector then computes 2-norm as:
@ -459,7 +453,6 @@ where:
\hline \hline
$nrm2$, $x$ & {\bf Function}\\ $nrm2$, $x$ & {\bf Function}\\
\hline \hline
Single Precision Real & psb\_genrm2\\
Long Precision Real & psb\_genrm2 \\ Long Precision Real & psb\_genrm2 \\
Long Precision Complex & psb\_genrm2 \\ Long Precision Complex & psb\_genrm2 \\
\hline \hline
@ -525,7 +518,6 @@ where:
\hline \hline
$nrmi$, $A$ & {\bf Function}\\ $nrmi$, $A$ & {\bf Function}\\
\hline \hline
Single Precision Real & psb\_spnrmi\\
Long Precision Real & psb\_spnrmi \\ Long Precision Real & psb\_spnrmi \\
Long Precision Complex & psb\_spnrmi \\ Long Precision Complex & psb\_spnrmi \\
\hline \hline
@ -596,7 +588,6 @@ where:
\hline \hline
$A$, $x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\ $A$, $x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\
\hline \hline
Single Precision Real & psb\_spmm\\
Long Precision Real & psb\_spmm \\ Long Precision Real & psb\_spmm \\
Long Precision Complex & psb\_spmm \\ Long Precision Complex & psb\_spmm \\
\hline \hline
@ -736,7 +727,6 @@ trans, unit, choice, diag, n, jx, jy, work}
\hline \hline
$T$, $x$, $y$, $D$, $\alpha$, $\beta$ & {\bf Subroutine}\\ $T$, $x$, $y$, $D$, $\alpha$, $\beta$ & {\bf Subroutine}\\
\hline \hline
Single Precision Real & psb\_spsm\\
Long Precision Real & psb\_spsm \\ Long Precision Real & psb\_spsm \\
Long Precision Complex & psb\_spsm \\ Long Precision Complex & psb\_spsm \\
\hline \hline

@ -1,4 +1,4 @@
\documentclass[12pt,a4paper,twoside]{article} \documentclass[10pt,a4paper,twoside]{article}
\usepackage{pstricks} \usepackage{pstricks}
\usepackage{fancybox} \usepackage{fancybox}
\usepackage{amsfonts} \usepackage{amsfonts}

File diff suppressed because one or more lines are too long
Loading…
Cancel
Save