These subroutines applies an overlap operator to the input vector:
where:
x | Subroutine |
Short Precision Real | psb_ovrl |
Long Precision Real | psb_ovrl |
Short Precision Complex | psb_ovrl |
Long Precision Complex | psb_ovrl |
call psb_ovrl(x, desc_a, info)
call psb_ovrl(x, desc_a, info, update=update_type, work=work)
Scope: global
Intent: in.
Default: update_type = psb_avg_
Scope: global
Specified as: a integer variable.
Notes
Example of use Consider the discretization mesh depicted in fig. 4, partitioned among two processes as shown by the dashed lines, with an overlap of 1 extra layer with respect to the partition of fig. 3; the data distribution is such that each process will own 40 entries in the index space, with an overlap of 16 entries placed at local indices 25 through 40; the halo will run from local index 41 through local index 48.. If process 0 assigns an initial value of 1 to its entries in the x vector, and process 1 assigns a value of 2, then after a call to psb_ovrl with psb_avg_ and a call to psb_halo_ the contents of the local vectors will be the following (showing a transition among the two subdomains)
Process 0 | Process 1
| ||||
I | GLOB(I) | X(I) | I | GLOB(I) | X(I) |
1 | 1 | 1.0 | 1 | 33 | 1.5 |
2 | 2 | 1.0 | 2 | 34 | 1.5 |
3 | 3 | 1.0 | 3 | 35 | 1.5 |
4 | 4 | 1.0 | 4 | 36 | 1.5 |
5 | 5 | 1.0 | 5 | 37 | 1.5 |
6 | 6 | 1.0 | 6 | 38 | 1.5 |
7 | 7 | 1.0 | 7 | 39 | 1.5 |
8 | 8 | 1.0 | 8 | 40 | 1.5 |
9 | 9 | 1.0 | 9 | 41 | 2.0 |
10 | 10 | 1.0 | 10 | 42 | 2.0 |
11 | 11 | 1.0 | 11 | 43 | 2.0 |
12 | 12 | 1.0 | 12 | 44 | 2.0 |
13 | 13 | 1.0 | 13 | 45 | 2.0 |
14 | 14 | 1.0 | 14 | 46 | 2.0 |
15 | 15 | 1.0 | 15 | 47 | 2.0 |
16 | 16 | 1.0 | 16 | 48 | 2.0 |
17 | 17 | 1.0 | 17 | 49 | 2.0 |
18 | 18 | 1.0 | 18 | 50 | 2.0 |
19 | 19 | 1.0 | 19 | 51 | 2.0 |
20 | 20 | 1.0 | 20 | 52 | 2.0 |
21 | 21 | 1.0 | 21 | 53 | 2.0 |
22 | 22 | 1.0 | 22 | 54 | 2.0 |
23 | 23 | 1.0 | 23 | 55 | 2.0 |
24 | 24 | 1.0 | 24 | 56 | 2.0 |
25 | 25 | 1.5 | 25 | 57 | 2.0 |
26 | 26 | 1.5 | 26 | 58 | 2.0 |
27 | 27 | 1.5 | 27 | 59 | 2.0 |
28 | 28 | 1.5 | 28 | 60 | 2.0 |
29 | 29 | 1.5 | 29 | 61 | 2.0 |
30 | 30 | 1.5 | 30 | 62 | 2.0 |
31 | 31 | 1.5 | 31 | 63 | 2.0 |
32 | 32 | 1.5 | 32 | 64 | 2.0 |
33 | 33 | 1.5 | 33 | 25 | 1.5 |
34 | 34 | 1.5 | 34 | 26 | 1.5 |
35 | 35 | 1.5 | 35 | 27 | 1.5 |
36 | 36 | 1.5 | 36 | 28 | 1.5 |
37 | 37 | 1.5 | 37 | 29 | 1.5 |
38 | 38 | 1.5 | 38 | 30 | 1.5 |
39 | 39 | 1.5 | 39 | 31 | 1.5 |
40 | 40 | 1.5 | 40 | 32 | 1.5 |
41 | 41 | 2.0 | 41 | 17 | 1.0 |
42 | 42 | 2.0 | 42 | 18 | 1.0 |
43 | 43 | 2.0 | 43 | 19 | 1.0 |
44 | 44 | 2.0 | 44 | 20 | 1.0 |
45 | 45 | 2.0 | 45 | 21 | 1.0 |
46 | 46 | 2.0 | 46 | 22 | 1.0 |
47 | 47 | 2.0 | 47 | 23 | 1.0 |
48 | 48 | 2.0 | 48 | 24 | 1.0 |