\begin{definition} (prodotto hermitiano) Sia $\KK=\CC$. Una mappa $\varphi : V \times V \to\CC$ si dice \textbf{prodotto hermitiano} se:
\begin{enumerate}[(i)]
\item$\varphi$ è $\CC$-lineare nel secondo argomento, ossia se $\varphi(\v, \U+\w)=\varphi(\v, \U)+\varphi(\v, \w)$ e
$\varphi(\v, a \w)= a \,\varphi(\v, \w)$,
\item$\varphi(\U, \w)=\conj{\varphi(\w, \U)}$.
\end{enumerate}
\end{definition}
\begin{definition} (prodotto hermitiano canonico in $\CC^n$) Si definisce
\textbf{prodotto hermitiano canonico} di $\CC^n$ il prodotto $\varphi : \CC^n \times\CC^n \to\CC$ tale per cui, detti $\v=(z_1\cdots z_n)^\top$ e $\w=(w_1\cdots w_n)^\top$, $\varphi(\v, \w)=\sum_{i=1}^n \conj{z_i} w_i$.
$\varphi$ è additiva anche nel primo argomento. \\
\li$\varphi(a \v, \w)=\conj{\varphi(\w, a \v)}=\conj{a}\conj{\varphi(\w, \v)}=\conj{a}\,\varphi(\v, \w)$. \\
\li$\varphi(\v, \v)=\conj{\varphi(\v, \v)}$, e quindi $\varphi(\v, \v)\in\RR$. \\
\li Sia $\v=\sum_{i=1}^n x_i \vv i$ e sia $\w=\sum_{i=1}^n y_i \vv i$, allora $\varphi(\v, \w)=\sum_{i =1}^n \sum_{j=1}^n \conj{x_i} y_i \varphi(\vv i, \vv j)$. \\
Siano $\basis=\{\vv1, \ldots, \vv n \}$ e $\basis' =\{\ww1, \ldots, \ww n \}$. Allora $\varphi(\ww i, \ww j)=[\ww i]_\basis^* M_\basis(\varphi)[\ww j]_\basis=\left( M_\basis^{\basis'}(\Idv)^i \right)^* M_\basis(\varphi) M_\basis^{\basis'}(\Idv)^j =
\left(M_\basis^{\basis'}(\Idv)\right)^*_i M_\basis(\varphi) M_\basis^{\basis'}(\Idv)^j$, da cui si ricava l'identità
desiderata.
\end{proof}
\begin{definition} (radicale di un prodotto hermitiano)
Analogamente al caso del prodotto scalare, si definisce il \textbf{radicale} del prodotto $\varphi$ come il seguente sottospazio:
\[ V^\perp=\{\v\in V \mid\varphi(\v, \w)=0\,\forall\w\in V \}. \]
\end{definition}
\begin{proposition}
Sia $\basis$ una base di $V$ e $\varphi$ un prodotto hermitiano. Allora $V^\perp=[\cdot]_\basis\inv(\Ker M_\basis(\varphi))$\footnote{Stavolta non è sufficiente considerare la mappa $f : V \to V^*$ tale che $f(\v)=\left[\w\mapsto\varphi(\v, \w)\right]$, dal momento che $f$ non è lineare, bensì antilineare, ossia $f(a \v)=\conj a f(\v)$.}.
\end{proposition}
\begin{proof}
Sia $\basis=\{\vv1, \ldots, \vv n \}$ e sia $\v\in V^\perp$.
Siano $a_1$, ..., $a_n \in\KK$ tali che $\v= a_1\vv1+\ldots+ a_n \vv n$. Allora, poiché $\v\in V$, $0=\varphi(\vv i, \v)
= a_1 \varphi(\vv i, \vv 1) + \ldots + a_n \varphi(\vv i, \vv n) = M_i [\v]_\basis$, da cui si ricava che $[\v]_\basis\in\Ker M_\basis(\varphi)$, e quindi che $V^\perp\subseteq [\cdot]_\basis\inv (\Ker M_\basis(\varphi))$. \\
Sia ora $\v\in V$ tale che $[\v]_\basis\in\Ker M_\basis(\varphi)$.
Allora, per ogni $\w\in V$, $\varphi(\w, \v)=[\w]_\basis^* M_\basis(\varphi)[\v]_\basis=[\w]_\basis^*0=0$, da cui si
conclude che $\v\in V^\perp$, e quindi che $V^\perp\supseteq[\cdot]_\basis\inv(\Ker M_\basis(\varphi))$, da cui
\begin{theorem} (di rappresentazione di Riesz per il prodotto hermitiano)
Sia $V$ uno spazio vettoriale su $\CC$ e sia $\varphi$ un suo prodotto hermitiano non
degenere. Allora per ogni $f \in V^*$ esiste un unico $\v\in V$ tale che
$f(\w)=\varphi(\v, \w)$$\forall\w\in V$.
\end{theorem}
\begin{proof}
Sia $\basis=\{\vv1, \ldots, \vv n \}$ una base ortogonale di $V$ per $\varphi$. Allora $\basis^*$ è una base di $V^*$. In
particolare $f = f(\vv1)\vec{v_1^*}+\ldots+ f(\vv n)\vec{v_n^*}$. Sia $\v=\frac{\conj{f(\vv1)}}{\varphi(\vv1, \vv1)}\vv1+\ldots+\frac{\conj{f(\vv n)}}{\varphi(\vv n, \vv n)}$. Detto $\w= a_1\vv1+\ldots+ a_n \vv n$,
si deduce che $\varphi(\v, \w)= a_1 f(\vv1)+\ldots+ a_n f(\vv n)= f(\w)$. Se esistesse $\v' \in V$ con
la stessa proprietà di $\v$, $\varphi(\v, \w)=\varphi(\v', \w)\implies\varphi(\v-\v', \w)$$\forall\w\in V$. Si deduce dunque che $\v-\v' \in V^\perp$, contenente solo $\vec0$ dacché $\varphi$ è non degenere;
e quindi si conclude che $\v=\v'$, ossia che esiste solo un vettore con la stessa proprietà di $\v$.
\begin{definition} (restrizione ai reali di uno spazio) Sia $V$
uno spazio vettoriale su $\CC$ con base $\basis$. Si definisce allora lo spazio $V_\RR$, detto
\textbf{spazio di restrizione su $\RR$} di $V$, come uno spazio su $\RR$ generato da
$\basis_\RR=\basis\cup i \basis$.
\end{definition}
\begin{example}
Si consideri $V =\CC^3$. Una base di $\CC^3$ è chiaramente $\{\e1, \e2, \e3\}$. Allora
$V_\RR$ sarà uno spazio vettoriale su $\RR$ generato dai vettori $\{\e1, \e2, \e3, i\e1, i\e2, i\e3\}$.
\end{example}
\begin{remark}
Si osserva che lo spazio di restrizione su $\RR$ e lo spazio di partenza condividono lo stesso insieme
di vettori. Infatti, $\Span_\CC(\basis)=\Span_\RR(\basis\cup i\basis)$. Ciononostante, $\dim V_\RR=2\dim V$\footnote{Si sarebbe potuto ottenere lo stesso risultato utilizzando il teorema delle torri algebriche: $[V_\RR : \RR]=[V: \CC][\CC: \RR]=2[V : \CC]$.}, se $\dim V \in\NN$.