fix(geometria): corregge gli errori degli appunti del 22/03/2023

main
parent 50016d655e
commit 07c1575f6f

@ -28,7 +28,7 @@
\li $\varphi(A + A', B) = \tr((A + A')B) = \tr(AB + A'B) = \tr(AB) + \tr(A'B) = \varphi(A, B) + \varphi(A', B)$ (linearità
nel primo argomento), \\
\li $\varphi(\alpha A, B) = \tr(\alpha A B) = \alpha \tr(AB) = \alpha \varphi(A, B)$ (omogeneità nel secondo argomento), \\
\li $\varphi(\alpha A, B) = \tr(\alpha A B) = \alpha \tr(AB) = \alpha \varphi(A, B)$ (omogeneità nel primo argomento), \\
\li $\varphi(A, B) = \tr(AB) = \tr(BA) = \varphi(B, A)$ (simmetria), \\
\li poiché $\varphi$ è simmetrica, $\varphi$ è lineare e omogenea anche nel secondo argomento, e quindi è una
forma bilineare simmetrica, ossia un prodotto scalare su $M(n, \KK)$.
@ -77,15 +77,15 @@ forma bilineare simmetrica, ossia un prodotto scalare su $\KK^n$.
\begin{example}
Il prodotto scalare canonico di $\RR^n$ è definito positivo: infatti $\varphi((x_1, ..., x_n), (x_1, ..., x_n)) =
\sum_{i=1}^n x_i^2 = 0 \iff x_i = 0$, $\forall 1 \leq i \leq n$ $\iff (x_1, ..., x_n) = \vec{0}$. \\
\sum_{i=1}^n x_i^2 > 0$, se $(x_1, ..., x_n) \neq \vec 0$. \\
Al contrario, il prodotto scalare $\varphi : \RR^2 \to \RR$ tale che $\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_1 - x_2 y_2$ non è definito positivo: $\varphi((x, y), (x, y)) = 0$, $\forall$ $(x, y) \mid x^2 = y^2$, ossia se
$y = x$ o $y = -x$.
\end{example}
\begin{definition}
Dato un prodotto scalare $\varphi$ di $V$, ad ogni vettore $\vec{v} \in V$ si associa una \textbf{forma quadratica}
$q : V \to \KK$ tale che $q(\vec{v}) = \varphi(\vec{v}, \vec{v})$.
Ad un dato prodotto scalare $\varphi$ di $V$ si associa una mappa
$q : V \to \KK$, detta \textbf{forma quadratica}, tale che $q(\vec{v}) = \varphi(\vec{v}, \vec{v})$.
\end{definition}
\begin{remark}
@ -100,31 +100,29 @@ forma bilineare simmetrica, ossia un prodotto scalare su $\KK^n$.
\begin{example}
Rispetto al prodotto scalare $\varphi : \RR^3 \to \RR$ tale che $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) =
x_1 y_1 + x_2 y_2 - x_3 y_3$, i vettori isotropi $(x, y, z)$ sono quelli tali che $x^2 + y^2 = z^2$, ossia
i vettori stanti sul cono di eq.~$x^2 + y^2 = z^2$.
x_1 y_1 + x_2 y_2 - x_3 y_3$, i vettori isotropi sono i vettori della forma $(x, y, z)$ tali che $x^2 + y^2 = z^2$, ossia
i vettori stanti sul cono di equazione $x^2 + y^2 = z^2$.
\end{example}
\begin{remark}
Come già osservato in generale per le app.~multilineari, il prodotto scalare è univocamente determinato
Come già osservato in generale per le applicazioni multilineari, il prodotto scalare è univocamente determinato
dai valori che assume nelle coppie $\vv{i}, \vv{j}$ estraibili da una base $\basis$. Infatti, se
$\basis = (\vv1, ..., \vv{k})$, $\vec{v} = \sum_{i=1}^k \alpha_i \vv{i}$ e $\vec{w} = \sum_{i=1}^k \beta_i \vv{i}$,
allora:
\[ \varphi(\vec{v}, \vec{w}) = \sum_{1 \leq i \leq j \leq k} \alpha_i \beta_j \, \varphi(\vv{i}, \vv{j}). \]
\[ \varphi(\vec{v}, \vec{w}) = \sum_{i=1}^k \sum_{j=1}^k \alpha_i \beta_j \, \varphi(\vv{i}, \vv{j}). \]
\end{remark}
\begin{definition}
Sia $\varphi$ un prodotto scalare di $V$ e sia $\basis = (\vv1, ..., \vv{n})$ una base ordinata di $V$. Allora si denota con \textbf{matrice associata}
a $\varphi$ la matrice:
Sia $\varphi$ un prodotto scalare di $V$ e sia $\basis = (\vv1, ..., \vv{n})$ una base ordinata di $V$. Allora si definisce la \textbf{matrice associata}
a $\varphi$ come la matrice:
\[ M_\basis(\varphi) = (\varphi(\vv{i}, \vv{j}))_{i,\,j = 1\text{---}n} \in M(n, \KK). \]
\end{definition}
\begin{remark}
Si possono fare alcune osservazioni riguardo $M_\basis(\varphi)$. \\
\li $M_\basis(\varphi)$ è simmetrica, infatti $\varphi(\vv{i}, \vv{j}) = \varphi(\vv{j}, \vv{i})$ per
definizione di prodotto scalare, \\
\begin{remark}\nl
\li $M_\basis(\varphi)$ è simmetrica, infatti $\varphi(\vv{i}, \vv{j}) = \varphi(\vv{j}, \vv{i})$,
dal momento che il prodotto scalare è simmetrico, \\
\li $\varphi(\vec{v}, \vec{w}) = [\vec{v}]_\basis^\top M_\basis(\varphi) [\vec{w}]_\basis$.
\end{remark}
@ -140,10 +138,10 @@ forma bilineare simmetrica, ossia un prodotto scalare su $\KK^n$.
\end{proof}
\begin{definition}
Si definisce \textbf{congruenza} la relazione di equivalenza $\cong$ definita nel seguente
Si definisce \textbf{congruenza} la relazione di equivalenza $\cong$ (denotata anche come $\equiv$) definita nel seguente
modo su $A, B \in M(n, \KK)$:
\[ A \cong B \iff \exists P \in GL(n, \KK) \mid A = P^\top A P. \]
\[ A \cong B \defiff \exists P \in GL(n, \KK) \mid A = P^\top A P. \]
\end{definition}
\begin{remark}
@ -151,7 +149,7 @@ forma bilineare simmetrica, ossia un prodotto scalare su $\KK^n$.
\li $A = I^\top A I \implies A \cong A$ (riflessione), \\
\li $A \cong B \implies A = P^\top B P \implies B = (P^\top)\inv A P\inv = (P\inv)^\top A P\inv \implies B \cong A$ (simmetria), \\
\li $A \cong B \implies A = P^\top B P$, $B \cong C \implies B = Q^\top C Q$, quindi $A = P^\top Q^\top C Q P =
\li $A \cong B$, $B \cong C$ $\implies A = P^\top B P$, $B = Q^\top C Q$, quindi $A = P^\top Q^\top C Q P =
(QP)^\top C (QP) \implies A \cong C$ (transitività).
\end{remark}
@ -163,14 +161,14 @@ forma bilineare simmetrica, ossia un prodotto scalare su $\KK^n$.
endomorfismo sono sempre simili).
\li Se $A$ e $B$ sono congruenti, $A = P^\top B P \implies \rg(A) = \rg(P^\top B P) = \rg(BP) = \rg(B)$,
dal momento che $P$ e $P^\top$ sono invertibili; quindi il rango è un invariante per congruenza. Allora
è ben definito il rango $\rg(\varphi)$ di un prodotto scalare come il rango di una sua qualsiasi matrice
associata.
si può ben definire il rango $\rg(\varphi)$ di un prodotto scalare come il rango della matrice
associata di $\varphi$ in una qualsiasi base di $V$. \\
\li Se $A$ e $B$ sono congruenti, $A = P^\top B P \implies \det(A) = \det(P^\top B P) = \det(P^\top) \det(B) \det(P)=
\det(P)^2 \det(B)$. Quindi, per $\KK = \RR$, il segno del determinante è invariante per congruenza.
\det(P)^2 \det(B)$. Quindi, per $\KK = \RR$, il segno del determinante è un altro invariante per congruenza.
\end{remark}
\begin{definition}
Si dice \textbf{radicale} di un prodotto scalare $\varphi$ lo spazio:
Si definisce il \textbf{radicale} di un prodotto scalare $\varphi$ come lo spazio:
\[ V^\perp = \{ \vec{v} \in V \mid \varphi(\vec{v}, \vec{w}) = 0 \, \forall \vec{w} \in V \} \]
@ -178,7 +176,9 @@ forma bilineare simmetrica, ossia un prodotto scalare su $\KK^n$.
\end{definition}
\begin{remark}
Il radicale di $\RR^n$ con il prodotto scalare canonico ha dimensione nulla, dal momento che $\forall \vec{v} \in \RR^n \setminus \{\vec{0}\}$, $q(\vec{v}) = \varphi(\vec{v}, \vec{v}) > 0$.
Il radicale del prodotto scalare canonico su $\RR^n$ ha dimensione nulla, dal momento che $\forall \vec{v} \in \RR^n \setminus \{\vec{0}\}$, $q(\vec{v}) = \varphi(\vec{v}, \vec{v}) > 0 \implies \v \notin V^\perp$. In
generale ogni prodotto scalare definito positivo (o negativo) è non degenere, dal momento che ogni vettore
non nullo non è isotropo, e dunque non può appartenere a $V^\perp$.
\end{remark}
\begin{definition}
@ -186,14 +186,19 @@ forma bilineare simmetrica, ossia un prodotto scalare su $\KK^n$.
dimensione non nulla.
\end{definition}
%TODO: spiegare perché \alpha_\varphi è lineare e aggiungere esempi nella parte precedente.
%TODO: aggiungere osservazioni sul radicale (i.e. che è uno spazio, che ogni suo vettore è isotropo, ...).
\begin{remark}
Si definisce l'applicazione lineare $\alpha_\varphi : V \to \dual{V}$ in modo tale che
$\alpha_\varphi(\vec{v}) = p$, dove $p(\vec{w}) = \varphi(\vec{v}, \vec{w})$. \\
Allora $V^\perp$ altro non è che $\Ker \alpha_\varphi$. Se $V$ ha dimensione finita, $\dim V = \dim \dual{V}$,
Sia $\alpha_\varphi : V \to \dual{V}$ la mappa\footnote{In letteratura questa mappa, se invertibile, è nota come \textit{isomorfismo musicale}, ed è in realtà indicata come $\flat$.} tale che
$\alpha_\varphi(\vec{v}) = p$, dove $p(\vec{w}) = \varphi(\vec{v}, \vec{w})$ $\forall \v$, $\w \in V$. \\
Si osserva che $\alpha_\varphi$ è un'applicazione lineare. Infatti, $\forall \v$, $\w$, $\U \in V$,
$\alpha_\varphi(\v + \w)(\U) = \varphi(\v + \w, \U) = \varphi(\v, \U) + \varphi(\w, \U) =
\alpha_\varphi(\v)(\U) + \alpha_\varphi(\w)(\U) \implies \alpha_\varphi(\v + \w) = \alpha_\varphi(\v) + \alpha_\varphi(\w)$. Inoltre $\forall \v$, $\w \in V$, $\lambda \in \KK$, $\alpha_\varphi(\lambda \v)(\w) =
\varphi(\lambda \v, \w) = \lambda \varphi(\v, \w) = \lambda \alpha_\varphi(\v)(\w) \implies
\alpha_\varphi(\lambda \v) = \lambda \alpha_\varphi(\v)$.
Si osserva inoltre che $\Ker \alpha_\varphi$ raccoglie tutti
i vettori $\v \in V$ tali che $\varphi(\v, \w) = 0$ $\forall \w \in W$, ossia esattamente i vettori di $V^\perp$, per cui si conclude che $V^\perp = \Ker \alpha_\varphi$ (per cui $V^\perp$ è effettivamente uno
spazio vettoriale). Se $V$ ha dimensione finita, $\dim V = \dim \dual{V}$,
e si può allora concludere che $\dim V^\perp > 0 \iff \Ker \alpha_\varphi \neq \{\vec{0}\} \iff \alpha_\varphi$ non è
invertibile (infatti lo spazio di partenza e di arrivo di $\alpha_\varphi$ hanno la stessa dimensione). In
particolare, $\alpha_\varphi$ non è invertibile se e solo se $\det(\alpha_\varphi) = 0$. \\
@ -205,6 +210,6 @@ forma bilineare simmetrica, ossia un prodotto scalare su $\KK^n$.
$M_{\basisdual}^\basis(\alpha_\varphi) = M_\basis(\varphi)$. \\
Si conclude allora che $\varphi$ è degenere se e solo se $\det (M_\basis(\varphi)) = 0$ e che
$V^\perp \cong \Ker M_\basis(\varphi)$ con l'isomorfismo è il passaggio alle coordinate.
$V^\perp \cong \Ker M_\basis(\varphi)$ mediante l'isomorfismo del passaggio alle coordinate.
\end{remark}
\end{document}

@ -1,4 +1,4 @@
\chapter{Introduzione al prodotto scalare}
\chapter{Il prodotto scalare}
\begin{note}
Nel corso del documento, per $V$, qualora non specificato, si intenderà uno spazio vettoriale di dimensione
@ -14,7 +14,7 @@
\li $\varphi(A + A', B) = \tr((A + A')B) = \tr(AB + A'B) = \tr(AB) + \tr(A'B) = \varphi(A, B) + \varphi(A', B)$ (linearità
nel primo argomento), \\
\li $\varphi(\alpha A, B) = \tr(\alpha A B) = \alpha \tr(AB) = \alpha \varphi(A, B)$ (omogeneità nel secondo argomento), \\
\li $\varphi(\alpha A, B) = \tr(\alpha A B) = \alpha \tr(AB) = \alpha \varphi(A, B)$ (omogeneità nel primo argomento), \\
\li $\varphi(A, B) = \tr(AB) = \tr(BA) = \varphi(B, A)$ (simmetria), \\
\li poiché $\varphi$ è simmetrica, $\varphi$ è lineare e omogenea anche nel secondo argomento, e quindi è una
forma bilineare simmetrica, ossia un prodotto scalare su $M(n, \KK)$.
@ -63,15 +63,15 @@
\begin{example}
Il prodotto scalare canonico di $\RR^n$ è definito positivo: infatti $\varphi((x_1, ..., x_n), (x_1, ..., x_n)) =
\sum_{i=1}^n x_i^2 = 0 \iff x_i = 0$, $\forall 1 \leq i \leq n$ $\iff (x_1, ..., x_n) = \vec{0}$. \\
\sum_{i=1}^n x_i^2 > 0$, se $(x_1, ..., x_n) \neq \vec 0$. \\
Al contrario, il prodotto scalare $\varphi : \RR^2 \to \RR$ tale che $\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_1 - x_2 y_2$ non è definito positivo: $\varphi((x, y), (x, y)) = 0$, $\forall$ $(x, y) \mid x^2 = y^2$, ossia se
$y = x$ o $y = -x$.
\end{example}
\begin{definition}
Dato un prodotto scalare $\varphi$ di $V$, ad ogni vettore $\vec{v} \in V$ si associa una \textbf{forma quadratica}
$q : V \to \KK$ tale che $q(\vec{v}) = \varphi(\vec{v}, \vec{v})$.
Ad un dato prodotto scalare $\varphi$ di $V$ si associa una mappa
$q : V \to \KK$, detta \textbf{forma quadratica}, tale che $q(\vec{v}) = \varphi(\vec{v}, \vec{v})$.
\end{definition}
\begin{remark}
@ -86,31 +86,29 @@
\begin{example}
Rispetto al prodotto scalare $\varphi : \RR^3 \to \RR$ tale che $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) =
x_1 y_1 + x_2 y_2 - x_3 y_3$, i vettori isotropi $(x, y, z)$ sono quelli tali che $x^2 + y^2 = z^2$, ossia
i vettori stanti sul cono di eq.~$x^2 + y^2 = z^2$.
x_1 y_1 + x_2 y_2 - x_3 y_3$, i vettori isotropi sono i vettori della forma $(x, y, z)$ tali che $x^2 + y^2 = z^2$, ossia
i vettori stanti sul cono di equazione $x^2 + y^2 = z^2$.
\end{example}
\begin{remark}
Come già osservato in generale per le app.~multilineari, il prodotto scalare è univocamente determinato
Come già osservato in generale per le applicazioni multilineari, il prodotto scalare è univocamente determinato
dai valori che assume nelle coppie $\vv{i}, \vv{j}$ estraibili da una base $\basis$. Infatti, se
$\basis = (\vv1, ..., \vv{k})$, $\vec{v} = \sum_{i=1}^k \alpha_i \vv{i}$ e $\vec{w} = \sum_{i=1}^k \beta_i \vv{i}$,
allora:
\[ \varphi(\vec{v}, \vec{w}) = \sum_{1 \leq i \leq j \leq k} \alpha_i \beta_j \, \varphi(\vv{i}, \vv{j}). \]
\[ \varphi(\vec{v}, \vec{w}) = \sum_{i=1}^k \sum_{j=1}^k \alpha_i \beta_j \, \varphi(\vv{i}, \vv{j}). \]
\end{remark}
\begin{definition}
Sia $\varphi$ un prodotto scalare di $V$ e sia $\basis = (\vv1, ..., \vv{n})$ una base ordinata di $V$. Allora si denota con \textbf{matrice associata}
a $\varphi$ la matrice:
Sia $\varphi$ un prodotto scalare di $V$ e sia $\basis = (\vv1, ..., \vv{n})$ una base ordinata di $V$. Allora si definisce la \textbf{matrice associata}
a $\varphi$ come la matrice:
\[ M_\basis(\varphi) = (\varphi(\vv{i}, \vv{j}))_{i,\,j = 1\text{---}n} \in M(n, \KK). \]
\end{definition}
\begin{remark}
Si possono fare alcune osservazioni riguardo $M_\basis(\varphi)$. \\
\li $M_\basis(\varphi)$ è simmetrica, infatti $\varphi(\vv{i}, \vv{j}) = \varphi(\vv{j}, \vv{i})$ per
definizione di prodotto scalare, \\
\begin{remark}\nl
\li $M_\basis(\varphi)$ è simmetrica, infatti $\varphi(\vv{i}, \vv{j}) = \varphi(\vv{j}, \vv{i})$,
dal momento che il prodotto scalare è simmetrico, \\
\li $\varphi(\vec{v}, \vec{w}) = [\vec{v}]_\basis^\top M_\basis(\varphi) [\vec{w}]_\basis$.
\end{remark}
@ -126,10 +124,10 @@
\end{proof}
\begin{definition}
Si definisce \textbf{congruenza} la relazione di equivalenza $\cong$ definita nel seguente
Si definisce \textbf{congruenza} la relazione di equivalenza $\cong$ (denotata anche come $\equiv$) definita nel seguente
modo su $A, B \in M(n, \KK)$:
\[ A \cong B \iff \exists P \in GL(n, \KK) \mid A = P^\top A P. \]
\[ A \cong B \defiff \exists P \in GL(n, \KK) \mid A = P^\top A P. \]
\end{definition}
\begin{remark}
@ -137,7 +135,7 @@
\li $A = I^\top A I \implies A \cong A$ (riflessione), \\
\li $A \cong B \implies A = P^\top B P \implies B = (P^\top)\inv A P\inv = (P\inv)^\top A P\inv \implies B \cong A$ (simmetria), \\
\li $A \cong B \implies A = P^\top B P$, $B \cong C \implies B = Q^\top C Q$, quindi $A = P^\top Q^\top C Q P =
\li $A \cong B$, $B \cong C$ $\implies A = P^\top B P$, $B = Q^\top C Q$, quindi $A = P^\top Q^\top C Q P =
(QP)^\top C (QP) \implies A \cong C$ (transitività).
\end{remark}
@ -149,14 +147,14 @@
endomorfismo sono sempre simili).
\li Se $A$ e $B$ sono congruenti, $A = P^\top B P \implies \rg(A) = \rg(P^\top B P) = \rg(BP) = \rg(B)$,
dal momento che $P$ e $P^\top$ sono invertibili; quindi il rango è un invariante per congruenza. Allora
è ben definito il rango $\rg(\varphi)$ di un prodotto scalare come il rango di una sua qualsiasi matrice
associata.
si può ben definire il rango $\rg(\varphi)$ di un prodotto scalare come il rango della matrice
associata di $\varphi$ in una qualsiasi base di $V$. \\
\li Se $A$ e $B$ sono congruenti, $A = P^\top B P \implies \det(A) = \det(P^\top B P) = \det(P^\top) \det(B) \det(P)=
\det(P)^2 \det(B)$. Quindi, per $\KK = \RR$, il segno del determinante è invariante per congruenza.
\det(P)^2 \det(B)$. Quindi, per $\KK = \RR$, il segno del determinante è un altro invariante per congruenza.
\end{remark}
\begin{definition}
Si dice \textbf{radicale} di un prodotto scalare $\varphi$ lo spazio:
Si definisce il \textbf{radicale} di un prodotto scalare $\varphi$ come lo spazio:
\[ V^\perp = \{ \vec{v} \in V \mid \varphi(\vec{v}, \vec{w}) = 0 \, \forall \vec{w} \in V \} \]
@ -164,7 +162,9 @@
\end{definition}
\begin{remark}
Il radicale di $\RR^n$ con il prodotto scalare canonico ha dimensione nulla, dal momento che $\forall \vec{v} \in \RR^n \setminus \{\vec{0}\}$, $q(\vec{v}) = \varphi(\vec{v}, \vec{v}) > 0$.
Il radicale del prodotto scalare canonico su $\RR^n$ ha dimensione nulla, dal momento che $\forall \vec{v} \in \RR^n \setminus \{\vec{0}\}$, $q(\vec{v}) = \varphi(\vec{v}, \vec{v}) > 0 \implies \v \notin V^\perp$. In
generale ogni prodotto scalare definito positivo (o negativo) è non degenere, dal momento che ogni vettore
non nullo non è isotropo, e dunque non può appartenere a $V^\perp$.
\end{remark}
\begin{definition}
@ -172,14 +172,19 @@
dimensione non nulla.
\end{definition}
%TODO: spiegare perché \alpha_\varphi è lineare e aggiungere esempi nella parte precedente.
%TODO: aggiungere osservazioni sul radicale (i.e. che è uno spazio, che ogni suo vettore è isotropo, ...).
\begin{remark}
Si definisce l'applicazione lineare $\alpha_\varphi : V \to \dual{V}$ in modo tale che
$\alpha_\varphi(\vec{v}) = p$, dove $p(\vec{w}) = \varphi(\vec{v}, \vec{w})$. \\
Allora $V^\perp$ altro non è che $\Ker \alpha_\varphi$. Se $V$ ha dimensione finita, $\dim V = \dim \dual{V}$,
Sia $\alpha_\varphi : V \to \dual{V}$ la mappa\footnote{In letteratura questa mappa, se invertibile, è nota come \textit{isomorfismo musicale}, ed è in realtà indicata come $\flat$.} tale che
$\alpha_\varphi(\vec{v}) = p$, dove $p(\vec{w}) = \varphi(\vec{v}, \vec{w})$ $\forall \v$, $\w \in V$. \\
Si osserva che $\alpha_\varphi$ è un'applicazione lineare. Infatti, $\forall \v$, $\w$, $\U \in V$,
$\alpha_\varphi(\v + \w)(\U) = \varphi(\v + \w, \U) = \varphi(\v, \U) + \varphi(\w, \U) =
\alpha_\varphi(\v)(\U) + \alpha_\varphi(\w)(\U) \implies \alpha_\varphi(\v + \w) = \alpha_\varphi(\v) + \alpha_\varphi(\w)$. Inoltre $\forall \v$, $\w \in V$, $\lambda \in \KK$, $\alpha_\varphi(\lambda \v)(\w) =
\varphi(\lambda \v, \w) = \lambda \varphi(\v, \w) = \lambda \alpha_\varphi(\v)(\w) \implies
\alpha_\varphi(\lambda \v) = \lambda \alpha_\varphi(\v)$.
Si osserva inoltre che $\Ker \alpha_\varphi$ raccoglie tutti
i vettori $\v \in V$ tali che $\varphi(\v, \w) = 0$ $\forall \w \in W$, ossia esattamente i vettori di $V^\perp$, per cui si conclude che $V^\perp = \Ker \alpha_\varphi$ (per cui $V^\perp$ è effettivamente uno
spazio vettoriale). Se $V$ ha dimensione finita, $\dim V = \dim \dual{V}$,
e si può allora concludere che $\dim V^\perp > 0 \iff \Ker \alpha_\varphi \neq \{\vec{0}\} \iff \alpha_\varphi$ non è
invertibile (infatti lo spazio di partenza e di arrivo di $\alpha_\varphi$ hanno la stessa dimensione). In
particolare, $\alpha_\varphi$ non è invertibile se e solo se $\det(\alpha_\varphi) = 0$. \\
@ -191,5 +196,5 @@
$M_{\basisdual}^\basis(\alpha_\varphi) = M_\basis(\varphi)$. \\
Si conclude allora che $\varphi$ è degenere se e solo se $\det (M_\basis(\varphi)) = 0$ e che
$V^\perp \cong \Ker M_\basis(\varphi)$ con l'isomorfismo è il passaggio alle coordinate.
$V^\perp \cong \Ker M_\basis(\varphi)$ mediante l'isomorfismo del passaggio alle coordinate.
\end{remark}

@ -35,5 +35,4 @@
~\newpage
\include{3. Prodotti hermitiani, spazi euclidei e teorema spettrale}
\end{document}

Loading…
Cancel
Save