\[\varphi\left(\sum_{i=1}^s a_i \vv i, \sum_{j=1}^t b_j \ww j \right)=
\sum_{i=1}^s \sum_{j=1}^t a_i b_j \varphi(\vv i, \ww j). \]
Se $\basis=\{\vv1, \ldots ,\vv n \}$ è una base di $V$, si definisce $M_\basis(\varphi)=(\varphi(\vv i, \vv j))_{i,j=1\mbox{--}n}$ come la matrice associata al prodotto scalare $\varphi$. In particolare,
se $a_\varphi : V \to V^*$ è la mappa lineare che associa a $\v$ il funzionale $\varphi(\v, \cdot)\in V^*$
tale che $\varphi(\v, \cdot)(\w)=\varphi(\v, \w)$.
Si definisce prodotto scalare \textit{standard} il prodotto $\varphi$ tale che
$\varphi(\v, \w)=[\v]_\basis^\top[\w]_\basis$.
Si dice che due vettori $\v$, $\w\in V$ sono ortogonali tra loro, scritto come $\v\perp\w$, se
$\varphi(\v, \w)=0$. Dato $W$ sottospazio di $V$, si definisce $W^\perp$ come il sottospazio di $V$ dei vettori ortogonali a tutti i vettori di $W$. Si dice che $\varphi$ è non degenere se $V^\perp=\zerovecset$.
Si scrive in particolare che $V^\perp=\Rad(\varphi)$.
Si dice che $V = U \oplus^\perp W$ (ossia che $U$ e $W$ sono in somma diretta ortogonale) se $V = U \oplus W$ e $U \subseteq W^\perp$. Sia $i : W \to V$ tale che $\w\mapsto\w$. Si scrive $\restr{\varphi}{W}$ intendendo $\restr{\varphi}{W \times W}$.
Ad ogni prodotto scalare si può associare una forma quadratica (e viceversa) $q : V \to\KK$ tale che
$q(\v)=\varphi(\v, \v)$. Un vettore $\v\in V$ si dice isotropo se $q(\v)=0$ (altrimenti si dice
anisotropo). Si definisce il cono isotropo $\CI(\varphi)$ come l'insieme dei vettori isotropi di $V$.
Se $\KK=\RR$, si dice che $\varphi$ è semidefinito positivo ($\varphi\geq0$) se $q(\v)\geq0$$\forall\v\in V$, e che è semidefinito negativo ($\varphi\leq0$) se $q(\v)\leq0$$\forall\v\in V$. Si dice
che $\varphi$ è definito positivo ($\varphi > 0$) se $\varphi\geq0$ e se $q(\v)=0\iff\v=\vec0$,
e che è definito negativo ($\varphi < 0$) se $\varphi\leq0$ e se $q(\v)=0\iff\v=\vec0$.
Si dice che $\varphi$ è definito se è definito positivo o definito negativo. Analogamente $\varphi$
è semidefinito se è semidefinito positivo o semidefinito negativo.
Si definisce relazione di congruenza la relazione di equivalenza $\cong$ (o $\equiv$) definita
su $\Sym(n, \KK)$ nel seguente modo:
\[ A \cong B \iff\exists P \in\GL(n, \KK)\mid A = P^\top B P. \]
\begin{itemize}
\item$A \cong B \implies\rg(A)=\rg(B)$ (il rango è invariante per congruenza; e dunque si può
definire $\rg(\varphi)$ come il rango di una qualsiasi matrice associata a $\varphi$),
\item$A \cong B \implies\det(A)\det(B)\geq0$ (in $\KK=\RR$ il segno del determinante è invariante per congruenza),
\item Due matrici associate a $\varphi$ in basi diverse sono congruenti per la formula
di cambiamento di base.
\end{itemize}
Si definiscono i seguenti tre indici per $\KK=\RR$:
\begin{itemize}
\item$\iota_+=\max\{\dim W \mid W \subseteq V \E\restr{\varphi}{W} > 0\}$,
\item$\iota_-=\max\{\dim W \mid W \subseteq V \E\restr{\varphi}{W} < 0\}$,
\item$\iota_0=\dim V^\perp$,
\end{itemize}
e si definisce segnatura di $\varphi$ la terna $\sigma=(\iota_+, \iota_-, \iota_0)$.
Si dice che una base $\basis$ di $V$ è ortogonale se i suoi vettori sono a due a due ortogonali (e
quindi la matrice associata in tale base è diagonale). Se $\Char\KK\neq2$, valgono i seguenti risultati:
\begin{itemize}
\item$\varphi(\v, \w)=\frac{q(\v+\w)- q(\v)- q(\w)}{2}$ (formula di polarizzazione; $\varphi$ è
completamente determinata dalla sua forma quadratica),
\item Esiste sempre una base ortogonale $\basis$ di $V$ (teorema di Lagrange; è sufficiente considerare
l'esistenza di un vettore anisotropo $\w\in V$ ed osservare che $V = W \oplus^\perp W^\perp$, dove $W =\Span(V)$, concludendo per induzione; o in caso di non esistenza di tale $\w$, concludere per il
risultato precedente),
\item (se $\KK=\CC$) Esiste sempre una base ortogonale $\basis$ di $V$ tale che:
Inoltre $\sigma$ è un invariante completo per la congruenza, e vale che, su una qualsiasi base ortogonale $\basis'$ di $V$, $\iota_+$ è esattamente il numero
di vettori anisotropi di base con forma quadratica positiva, che $\iota_-$ è il numero di vettori con forma
negativa e che $\iota_0$ è il numero di vettori isotropi (teorema di Sylvester, caso reale; si consideri
una base ortogonale e se ne normalizzino i vettori anisotropi, facendo infine eventuali considerazioni
dimensionali per dimostrare la seconda parte dell'enunciato),
\item$\varphi > 0\iff\sigma=(n, 0, 0)$ e $\varphi < 0\iff\sigma=(0, n, 0)$,
\item$\varphi\geq0\iff\sigma=(n - k, 0, k)$ e $\varphi\leq0\iff\sigma=(0, n - k, k)$,
con $0\leq k \leq n$ tale che $k =\dim V^\perp$,
\item I vettori isotropi di una base ortogonale sono una base di $V^\perp$,
\item$\rg(\varphi)=\iota_++\iota_-$,
\item$n =\iota_++\iota_-+\iota_0$,
\item Se $W$ è un sottospazio di $V$, $\iota_+(\varphi)\geq\iota_+(\restr{\varphi}{W})$ e
Si chiama matrice di Sylvester una matrice della forma vista nell'enunciato del teorema di Sylvester
reale, e si dice che una base $\basis$ è una base di Sylvester se la matrice ad essa associata è di
Sylvester. Per il teorema di Sylvester, tale base esiste sempre, e la matrice di Sylvester è unica per
ogni prodotto scalare $\varphi$.
\subsubsection{Algoritmo di ortogonalizzazione di Gram-Schmidt}
Data una base $\basis$ di $V$, se $\abs{\CI(\varphi)\cap\basis}\leq1$ (ossia se ogni vettore di
$\basis$ è anisotropo o al più vi è un vettore isotropo, posto in fondo come $\vv n$), si può
trovare una base ortogonale $\basis' =\{\vv1', \ldots, \vv n' \}$ a partire da $\basis$ tale che ne mantenga la stessa bandiera, ossia tale che:
\[\Span(\vv1', \ldots, \vv i')=\Span(\vv1, \ldots, \vv i)\forall1\leq i \leq n. \]
Si definisce $C(\w, \v)=\frac{\varphi(\v, \w)}{\varphi(\w, \w)}$ come il coefficiente di Fourier
di $\v$ rispetto a $\w$. L'algoritmo allora funziona nel seguente modo:
\begin{enumerate}
\item Si prenda in considerazione $\vv1$ e si sottragga ad ogni altro vettore $\vv i$ della base il
vettore $C(\vv1, \vv i)\,\vv1$,
\item Si ripeta il processo considerando come $\basis$ tutti i vettori di $\basis$ con $\vv1$ escluso,
o si termini l'algoritmo una volta che è rimasto un solo vettore.
\end{enumerate}
\subsubsection{Metodo di Jacobi per il calcolo della segnatura}
Sia $A = M_\basis(\varphi)$ una matrice associata a $\varphi$ nella base $\basis$.
Sia $d_0 :=1$. Se $d_i =\det(A_{1, \ldots, i}^{1, \ldots, i})$ (è possibile anche
prendere un'altra sequenza di minori, a patto che essi siano principali e che siano
crescenti per inclusione) è diverso da zero
per ogni $1\leq i \leq n-1$, allora $\iota_+$ è il numero di permanenze di segno
di $d_i$ (zero escluso), $\iota_-$ è il numero di variazioni di segno (zero escluso), e $\iota_0$ è $1$ se
$d_n =0$ o $0$ altrimenti.
In generale, se $W$ è un sottospazio di $W'$, $W$ ha codimensione $1$ rispetto a $W'$ e $\det(M_{\basis_W}(\restr{\varphi}{W}))\neq0$ per una base $\basis_W$ di $W$, allora la segnatura
di $\restr{\varphi}{W'}$ è la stessa di $\restr{\varphi}{W}$, dove si aggiunge
$1$ a $\iota_+$, se i determinanti $\det(M_{\basis_W}(\restr{\varphi}{W}))$ e $\det(M_{\basis_{W'}}(\restr{\varphi}{W}))$ (dove $\basis_{W'}$ è una base di $W'$) concordano di segno, $1$ a $\iota_-$, se
sono discordi, o $1$ a $\iota_0$ se l'ultimo di questi due determinanti è nullo.
Dal metodo di Jacobi si deduce il criterio di definitezza di Sylvester: $A$ è
definita positiva se e solo se $d_i > 0$$\forall1\leq i \leq n$; $A$ è
definita negativa se e solo se $(-1)^i d_i > 0$$\forall1\leq i \leq n$.
\subsubsection{Sottospazi isotropi e indice di Witt}
Si dice che un sottospazio $W$ di $V$ è isotropo se $\restr{\varphi}{W}=0$, o
equivalentemente se $W \subseteq W^\perp$ (i.e.~se $W \cap W^\perp= W$, e quindi
se $\Rad(\restr{\varphi}{W})= W$). Si definisce allora l'indice di Witt $W(\varphi)$ come
la dimensione massima di un sottospazio isotropo di $V$.
\begin{itemize}
\item$V^\perp$ è un sottospazio isotropo,
\item Se $W$ è isotropo, allora $\dim W \leq\frac{\dim V +\dim\Rad(\varphi)}{2}$,
\item Se $W$ è isotropo e $\varphi$ è non degenere, allora $\dim W \leq\frac{1}{2}\dim V$,
\item Se $\KK=\RR$, allora $W(\varphi)=\min\{ i_+, i_-\}+ i_0$ (è sufficiente considerare
una base di Sylvester e creare una nuova base i cui i vettori sono o isotropi o della forma $\vv i -\ww i$, dove $q(\vv i)=1$ e $q(\ww i)=1$, concludendo con discussioni dimensionali),
\item Se $\varphi$ è definito, allora $W(\varphi)=0$,
\item Se $\varphi$ è semidefinito, allora $W(\varphi)= i_0$ (e $W = V^\perp$ è un sottospazio