dove si è utilizzata la disuguaglianza di Cauchy-Schwarz. Da quest'ultima disuguaglianza si ricava, prendendo la radice quadrata, la disuguaglianza
desiderata. \\
Se invece $\varphi$ è il prodotto hermitiano standard, $\norm{\v+\w}^2=\norm{\v}^2+2\,\Re(\varphi(\v, \w))+\norm{\w}^2\leq\norm{\v}^2+2\abs{\varphi(\v, \w)}+\norm{\w}^2$. Allora, riapplicando
la disuguaglianza di Cauchy-Schwarz, si ottiene che:
\[\norm{\v+\w}^2\leq(\norm{\v}+\norm{\w})^2, \]
da cui, come prima, si ottiene la disuguaglianza desiderata.
\end{proof}
\begin{remark}
Utilizzando il concetto di norma euclidea, si possono ricavare due teoremi fondamentali della geometria,
e già noti dalla geometria euclidea. \\
\li Se $\v\perp\w$, allora $\norm{\v+\w}^2=\norm{\v}^2+\overbrace{(\varphi(\v, \w)+\varphi(\w, \v))}^{=\,0}+\norm{\w}^2=\norm{\v}^2+\norm{\w}^2$ (teorema di Pitagora), \\
\li Se $\norm{\v}=\norm{\w}$ e $\varphi$ è un prodotto scalare, allora $\varphi(\v+\w, \v-\w)=\norm{\v}^2-\varphi(\v, \w)+\varphi(\w, \v)-\norm{\w}^2=\norm{\v}^2-\norm{\w}^2=0$, e quindi
$\v+\w\perp\v-\w$ (le diagonali di un rombo sono ortogonali tra loro).
\end{remark}
\begin{remark}
Sia $\basis=\{\vv1, \ldots, \vv n \}$ è una base ortogonale di $V$ per $\varphi$. \\
\li Se $\v= a_1\vv1+\ldots+ a_n \vv n$, con $a_1$, ..., $a_n \in\KK$, si osserva
che $\varphi(\v, \vv i)= a_i \varphi(\vv i, \vv i)$. Quindi $\v=\sum_{i=1}^n \frac{\varphi(\v, \vv i)}{\varphi(\vv i, \vv i)}\,\vv i$. In particolare, $\frac{\varphi(\v, \vv i)}{\varphi(\vv i, \vv i)}$ è
detto \textbf{coefficiente di Fourier} di $\v$ rispetto a $\vv i$. Se $\basis$ è ortonormale,
$\v=\sum_{i=1}^n \varphi(\v, \vv i)\,\vv i$. \\
\li Quindi $\norm{\v}^2=\varphi(\v, \v)=\sum_{i=1}^n \frac{\varphi(\v, \vv i)^2}{\varphi(\vv i, \vv i)}$. In
particolare, se $\basis$ è ortonormale, $\norm{\v}^2=\sum_{i=1}^n \varphi(\v, \vv i)^2$. In tal caso,
si può esprimere la disuguaglianza di Bessel: $\norm{\v}^2\geq\sum_{i=1}^k \varphi(\v, \vv i)^2$ per $k \leq n$.