aritmetica: composizione di applicazioni

main
parent 87688d9353
commit a5cec75563

@ -26,10 +26,10 @@ di una relazione di equivalenza $R$ diventano:
\item $a \sim b \land b \sim c \implies a \sim c$
\end{itemize}
\begin{theorem}
\begin{lemma}
Definita una relazione di equivalenza $R$ con operazione
binaria $\sim$, $a \sim b \land c \sim b \implies a \sim c$.
\end{theorem}
\end{lemma}
\begin{proof}
Dalla proprietà riflessiva di $R$, $c \sim b \implies b \sim c$.
@ -66,14 +66,36 @@ si relazionano ad $a$ mediante tale relazione di equivalenza.
$\cl(y) \subseteq \cl(x)$, e quindi $\cl(x) = \cl(y)$).
\end{proof}
\begin{theorem}
Data una partizione di un insieme che lo compone in insiemi a due
a due disgiunti, è sempre possibile costruire delle classi di equivalenza.
\end{theorem}
\begin{proof}
Vogliamo dimostrare che, data la stessa appartenenza ad un insieme come relazione,
essa è una relazione di equivalenza.
Sicuramente $a \sim a$ (proprietà riflessiva).
Inoltre, $a \sim b \implies a, b \in A_\alpha \implies b \sim a$
(proprietà simmetrica).
Infine, $a \sim b, \, b \sim c \implies a, b, c \in A_\alpha \implies a \sim c$
(proprietà transitiva).
In particolare, dato $a \in A_\alpha$, $\cl(a) = A_\alpha$.
\end{proof}
\section{Le applicazioni}
La nozione di applicazione di un insieme in un altro ci permette
di generalizzare, ma soprattutto di definire, il concetto di
funzione. Dati due insiemi $S$ e $T$, si dice che $\sigma$ è un'applicazione
da $S$ a $T$, se $\sigma \subseteq S \times T \land \forall s \in S, \existsone
funzione.
\begin{definition}[Applicazione]
Dati due insiemi $S$ e $T$, si dice che $\sigma$ è un'applicazione
da $S$ a $T$, se $\sigma \subseteq S \times T \land \forall s \in S, \existsone
t \in T \mid (s, t) \in \sigma$. Tale applicazione allora si scrive come
$\sigma : S \rightarrow T$.
$\sigma : S \to T$.
\end{definition}
Si scrive $\sigma : s \rightarrowtail \sigma(s)$ per sottintendere che
$\forall \, (s, t) \in \sigma, (s, t) = (s, \sigma(t))$.
@ -87,7 +109,7 @@ $\forall \, (s, t) \in \sigma, (s, t) = (s, \sigma(t))$.
\end{definition}
\begin{definition}[Surgettività]
Un'applicazione si dice surgettiva se ad ogni immagine
Un'applicazione si dice surgettiva (o talvolta \textit{su $T$}) se ad ogni immagine
è corrisposto almeno un elemento, ossia anche che
$\forall t \in T, \exists s \mid \sigma(s) = t$.
\end{definition}
@ -97,3 +119,87 @@ $\forall \, (s, t) \in \sigma, (s, t) = (s, \sigma(t))$.
suriettiva, ossia se $\forall t \in T, \existsone s \in S
\mid \sigma(s) = t$.
\end{definition}
\subsection{Composizione di applicazioni}
\begin{definition}[Composizione]
Date due applicazioni $\sigma : S \to T$ e
$\tau : T \to U$, si può definire
un'applicazione detta composizione
$(\tau \circ \sigma) : S \to U$, tale per cui
$(\tau \circ \sigma) : s \mapsto \tau(\sigma(s))$.
\end{definition}
Dobbiamo tuttavia assicurarci che tale applicazione
possa esistere, ossia verificare che $\forall s \in S \existsone
u \in U \mid (s, u) \in S \times U$; quindi che $\tau(\sigma(s))$
sia unico. Tuttavia questa proprietà è banale: $\sigma(s)$ è Sicuramente
unico poiché $\sigma$ è un'applicazione, e pertanto $\tau(\sigma(s))$ lo è,
essendo anch'essa un'applicazione.
\subsubsection{Proprietà associativa della composizione}
È inoltre interessante dimostrare che la composizione rispetta la proprietà associativa,
ossia che $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$.
\begin{lemma}[Proprietà associativa della composizione]
Date tre applicazioni $\alpha$, $\beta$, $\gamma$,
$(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$.
\end{lemma}
\begin{proof}
Preso un $a$ appartenente al dominio di $\gamma$, per il primo membro abbiamo:
$$((\alpha \circ \beta) \circ \gamma)(a) = (\alpha \circ \beta)(\gamma(a)) =
\alpha(\beta(\gamma(a)))$$
Analogamente per il secondo membro abbiamo:
$$(\alpha \circ (\beta \circ \gamma))(a) = \alpha((\beta \circ \gamma)(a)) =
\alpha(\beta(\gamma(a)))$$
\end{proof}
\subsubsection{Iniettività, surgettività e bigettività della composizione}
L'iniettività, la surgettività e la bigettività di una composizione sono
ereditate dalle applicazioni di cui è composta se tutte queste le rispettano, ossia:
\begin{itemize}
\item $(\tau \circ \sigma)$ è iniettiva se $\tau$ e $\sigma$ lo sono.
\item $(\tau \circ \sigma)$ è surgettiva se $\tau$ e $\sigma$ lo sono.
\item $(\tau \circ \sigma)$ è bigettiva se $\tau$ e $\sigma$ lo sono.
\end{itemize}
\begin{lemma}[Iniettività della composizione]
\label{lemma:iniettivita_composizione}
$(\tau \circ \sigma)$ è iniettiva se $\tau$ e $\sigma$ lo sono.
\end{lemma}
\begin{proof}
Dal momento che $\sigma$ è iniettiva $s_1 \neq s_2 \implies \sigma(s_1) \neq \sigma(s_2)$,
ma a sua volta, essendo $\tau$ iniettiva, $\sigma(s_1) \neq \sigma(s_2) \implies
\tau(\sigma(s_1)) \neq \tau(\sigma(s_2))$.
\end{proof}
\begin{lemma}[Surgettività della composizione]
\label{lemma:surgettivita_composizione}
$(\tau \circ \sigma)$ è surgettiva se $\tau$ e $\sigma$ lo sono.
\end{lemma}
\begin{proof}
Dal momento che $\sigma$ è surgettiva $\forall s \in \Dom(\sigma),
\exists t \in \Codom(\sigma) \mid t = \sigma(s)$. Tuttavia, essendo $t \in \Dom(\tau)$,
$\exists u \in \Codom(\tau) \mid u = \tau(t) = \tau(\sigma(s))$.
\end{proof}
\begin{lemma}[Bigettività della composizione]
$(\tau \circ \sigma)$ è bigettiva se $\tau$ e $\sigma$ lo sono.
\end{lemma}
\begin{proof}
Se $\tau$ e $\sigma$ sono bigettive, sono sia iniettive che surgettive;
pertanto $(\tau \circ \sigma)$ è sia iniettiva che bigettiva per i
lemmi \ref{lemma:iniettivita_composizione} e
\ref{lemma:surgettivita_composizione}.
\end{proof}

Binary file not shown.

@ -39,6 +39,8 @@
\DeclareMathOperator{\existsone}{\exists !}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\Dom}{Dom}
\DeclareMathOperator{\Codom}{Cod}
\let\oldemptyset\emptyset
\let\emptyset\varnothing

Loading…
Cancel
Save