feat(geometria): aggiunge le soluzioni agli esercizi del 26/04/2023

main
parent 2569898143
commit cf785e273b

@ -4,7 +4,7 @@
\title{\textbf{Note del corso di Geometria 1}} \title{\textbf{Note del corso di Geometria 1}}
\author{Gabriel Antonio Videtta} \author{Gabriel Antonio Videtta}
\date{17 e 19 aprile 2023} \date{17, 19 e 26 aprile 2023}
\begin{document} \begin{document}
@ -143,7 +143,9 @@
\li Vale il teorema di Lagrange, e quindi quello di Sylvester, benché con alcune accortezze: si \li Vale il teorema di Lagrange, e quindi quello di Sylvester, benché con alcune accortezze: si
introduce, come nel caso di $\RR$, il concetto di segnatura, che diventa l'invariante completo introduce, come nel caso di $\RR$, il concetto di segnatura, che diventa l'invariante completo
della nuova congruenza hermitiana, che ancora una volta si dimostra essere una relazione della nuova congruenza hermitiana, che ancora una volta si dimostra essere una relazione
di equivalenza. di equivalenza. \\
\li Come mostrato nei momenti finali del documento (vd.~\textit{Esercizio 3}), vale
la formula delle dimensioni anche nel caso del prodotto hermitiano.
\end{remark} \end{remark}
\hr \hr
@ -1335,9 +1337,10 @@
$a_{ij} = 0$ \, $\forall i < j \leq n$, dimostrando il passo induttivo, e quindi la tesi. $a_{ij} = 0$ \, $\forall i < j \leq n$, dimostrando il passo induttivo, e quindi la tesi.
\end{proof} \end{proof}
\begin{remark} \begin{remark}\nl
Chiaramente vale anche il viceversa del precedente lemma: se infatti $A \in M(n, \CC)$ è diagonale, \li Chiaramente vale anche il viceversa del precedente lemma: se infatti $A \in M(n, \CC)$ è diagonale,
$A$ è anche normale, dal momento che commuta con $A^*$. $A$ è anche normale, dal momento che commuta con $A^*$. \\
\li Reiterando la stessa dimostrazione del precedente lemma per $A \in M(n, \RR)$ triangolare superiore e normale reale (i.e.~$AA^\top = A^\top A$) si può ottenere una tesi analoga.
\end{remark} \end{remark}
\begin{theorem} \begin{theorem}
@ -1383,40 +1386,150 @@
\end{proof} \end{proof}
\begin{remark}\nl \begin{remark}\nl
\li Si può osservare mediante l'ultimo corollario che $A$ hermitiana \li Si può osservare mediante l'applicazione dell'ultimo corollario che, se $A$ è hermitiana (ed è dunque
$\implies$ $U^* A U = D$ è reale. \\ anche normale),
\li Si può estendere il teorema ad una matrice generica $\exists U \in U_n \mid U^* A U = D$, dove $D \in M(n, \RR)$, ossia tale
$A \in M(n, \RR)$ normale, a patto che $A$ ha tutti autovalori corollario implica il teorema spettrale in forma complessa. Infatti
reali. Infatti, in tal caso, esiste $O \in O_n$ tale che $\conj{D} = D^* = U^* A^* U = U^* A U = D \implies D \in M(n, \RR)$. \\
$O^\top A O = D$ con $D$ diagonale. Inoltre, $A^\top = (O D O^\top)^\top
= O D^\top O^\top = O D O^\top = A$. Quindi $A$ è necessariamente \li Se $A \in M(n, \RR)$ è una matrice normale reale (i.e.~$A A^\top = A^\top A$) con
anche simmetrica. $p_A$ completamente riducibile in $\RR$, allora è possibile reiterare la dimostrazione
del precedente teorema per concludere che $\exists O \in O_n \mid O^\top A O = D$ con
$D \in M(n, \RR)$, ossia che $A = O D O^\top$.
Tuttavia questo implica che $A^\top = (O D O^\top) = O D^\top O^\top = O D O^\top = A$,
ossia che $A$ è simmetrica. In particolare, per il teorema spettrale reale, vale
anche il viceversa. Pertanto, se $A \in M(n, \RR)$, $A$ è una matrice normale reale con $p_A$ completamente
riducibile in $\RR$ $\iff$ $A = A^\top$.
\end{remark} \end{remark}
\begin{exercise}\nl \begin{exercise}
Sia $V$ uno spazio dotato del prodotto $\varphi$. Sia
$W \subseteq V$ un sottospazio di $V$. Sia $\basis_W= \{ \ww 1, \ldots, \ww k \}$
una base di $W$ e sia $\basis = \{ \ww 1, ..., \ww k, \vv{k+1}, ..., \vv n \}$ una base di $V$.
Sia $A = M_\basis(\varphi)$. Si dimostrino allora i seguenti risultati.
\begin{enumerate}[(i)] \begin{enumerate}[(i)]
\item $(V, \varphi)$ con $\varphi$ non degenere. \item $W^\perp = \{ \v \in V \mid \varphi(\v, \ww i) = 0 \}$,
$W \subseteq V$ sottospazio. Sia $\ww 1$, ..., $\ww k$ \item $W^\perp = \{ \v \in V \mid A_{1,\ldots,k} [\v]_\basis = 0 \} = [\cdot]_\basis\inv (\Ker A_{1,\ldots,k})$,
una base di $W$ e sia $\basis = \{ \ww 1, ..., \ww k, ..., \vv n \}$ una base di $V$. Allora $W^\top = \{ \v \in V \mid \varphi(\v, \ww i) = 0 \} = \{ \v \in V \mid A_{1,\ldots,k} [\v]_\basis = 0 \}$ con $A = M_\basis(\varphi)$. Pertanto $\dim W^\top = n - \rg(A_{1,...,k})$. \item $\dim W^\top = \dim V - \rg(A_{1,\ldots,k})$,
\item Se $\varphi$ è non degenere, $\dim W + \dim W^\perp = \dim V$.
\end{enumerate}
\end{exercise}
\item Sia $U \subseteq V$ sottospazio. Dimostrare che \begin{proof}[Soluzione]
nel quoziente $V/U$ il prodotto induce il prodotto $\tilde \varphi([\v], [\v']) = \varphi(\v, \v')$ se e soltanto se Chiaramente vale l'inclusione $W^\perp \subseteq \{ \v \in V \mid \varphi(\v, \ww i) = 0 \}$. Sia
$U \subseteq V^\perp$ ($U \perp V$). allora $\v \in V \mid \varphi(\v, \ww i) = 0$ $\forall 1 \leq i \leq k$ e sia $\w \in W$. Allora esistono $\alpha_1$, ..., $\alpha_k$ tali
che $\w = \alpha_1 \ww 1 + \ldots + \alpha_k \ww k$. Pertanto si conclude che $\varphi(\v, \alpha_1 \ww 1 + \ldots + \alpha_k \ww k) = \alpha_1 \varphi(\v, \ww 1) + \ldots + \alpha_k \varphi(\v, \ww k) = 0 \implies \v \in W^\top$. Pertanto $W^\top = \{ \v \in V \mid \varphi(\v, \ww i) = 0 \}$, dimostrando (i). \\
Si osserva che $\varphi(\v, \ww i) = 0 \iff \varphi(\ww i, \v) = 0$. Se $\varphi$ è scalare, allora
$\varphi(\ww i, \v) = 0 \defiff [\ww i]_\basis^\top A [\v]_\basis = (\e i)^\top A [\v]_\basis = A_i [\v]_\basis = 0$. Pertanto $\v \in W^\top \iff A_i [\v]_\basis = 0$ $\forall 1 \leq i \leq k$, ossia se
$A_{1, \ldots, k} [\v]_\basis = 0$ e $[\v]_\basis \in \Ker A_{1, \ldots, k}$, dimostrando (ii). Analogamente
si ottiene la tesi se $\varphi$ è hermitiano.
Applicando la formula delle dimensioni, si ricava dunque che $\dim W^\top = \dim \Ker A_{1, \ldots, k} =
\dim V - \rg A_{1, \ldots, k}$, dimostrando (iii). \\
Se $\varphi$ è non degenere, $A$ è invertibile, dacché $\dim V^\perp = \dim \Ker A = 0$. Allora
ogni minore di taglia $k$ di $A$ ha determinante diverso da zero. Dacché ogni minore di taglia $k$
di $A_{1,\ldots,k}$ è anche un minore di taglia $k$ di $A$, si ricava che anche ogni minore di taglia
$k$ di $A_{1, \ldots, k}$ ha determinante diverso da zero, e quindi che $\rg(A_{1,\ldots,k}) \geq k$.
Dacché deve anche valere $\rg(A_{1,\ldots,k}) \leq \min\{k,n\} = k$, si conclude che $\rg(A_{1,\ldots,k})$
vale esattamente $k = \dim W$. Allora, dal punto (iii), vale che $\dim W^\perp + \dim W = \dim W^\perp + \rg(A_{1,\ldots,k}) = \dim V$, dimostrando il punto (iv).
\end{proof}
\item Dimostrare che il prodotto $\tilde \varphi$ è \begin{exercise}
non degenere. Sia $V$ uno spazio dotato del prodotto $\varphi$. Sia
$U \subseteq V$ un sottospazio di $V$. Si dimostrino allora i seguenti due
risultati.
\item Sia $\pi : V \to V/V^\perp$ la proiezione al \begin{enumerate}[(i)]
quoziente. Sia $W \subseteq V$ sottospazio. Dimostrare \item Il prodotto $\varphi$
che $W^\perp = \{ \v \in V \mid \tilde \varphi(\pi(\v), \varphi(\w)) = 0 \forall \w \in W \} = \pi\inv(\pi(W)^\perp)$. induce un prodotto $\tilde \varphi : V/U \times V/U \to \KK$ tale che
$\tilde \varphi(\v + U, \v' + U) = \varphi(\v, \v')$ se e soltanto se $U \subseteq V^\perp$, ossia
se e solo se $U \perp V$.
\item Dedurre dai precedenti punti la formula della dimensione %TODO: controllare che debba valere $U = V^\perp$
dell'ortogonale. \item Se $U = V^\perp$, allora il prodotto $\tilde \varphi$ è non degenere.
\item Dimostrare che $(W^\perp)^\perp = W + V^\perp$. \item Sia $\pi : V \to V/V^\perp$ l'applicazione lineare di proiezione al quoziente. Allora
$U^\perp = \{ \v \in V \mid \tilde \varphi(\pi(\v), \pi(\U)) = 0 \, \forall \U \in U \} = \pi\inv(\pi(U)^\perp)$.
\item Dimostrare che $A$ anti-hermitiana è normale e ha tutti autovalori \item Vale la formula delle dimensioni per il prodotto $\varphi$: $\dim U + \dim U^\perp = \dim V + \dim (U \cap V^\perp)$.
immaginari.
\end{enumerate} \end{enumerate}
\end{exercise} \end{exercise}
\begin{proof}[Soluzione]
Sia $\w = \v + \uu 1 \in \v + U$, con $\uu 1 \in U$.
Se $\tilde \varphi$ è ben definito, allora deve valere l'uguaglianza $\varphi(\v, \v') = \varphi(\w, \v') =
\varphi(\v + \uu 1, \v') = \varphi(\v, \v') + \varphi(\uu 1, \v')$, ossia $\varphi(\uu 1, \v') = 0$ $\forall \v' \in V \implies \uu 1 \in V^\perp \implies U \subseteq V^\perp$. Viceversa, se $U \subseteq V^\perp$,
sia $\w' = \v' + \uu 2 \in \v' + U$, con $\uu 2 \in U$. Allora vale la seguente identità:
\[ \varphi(\w, \w') = \varphi(\v + \uu 1, \v' + \uu 2) = \varphi(\v, \v') + \underbrace{\varphi(\v, \uu 2) + \varphi(\uu 1, \v') + \varphi(\uu 1, \uu 2)}_{=\,0}. \]
Pertanto $\tilde \varphi$ è ben definito, dimostrando (i). \\
Sia ora $U = V/V^\perp$. Sia $\v + U \in (V/U)^\perp = \Rad(\tilde \varphi)$. Allora, $\forall \v' + U \in V/U$,
$\tilde \varphi(\v + U, \v' + U) = \varphi(\v, \v') = 0$, ossia $\v \in V^\perp = U$. Pertanto
$\v + U = U \implies \Rad(\tilde \varphi) = \{ V^\perp \}$, e quindi $\tilde \varphi$ è non degenere,
dimostrando (ii). \\
Si dimostra adesso l'uguaglianza $U^\perp = \pi\inv(\pi(U)^\perp)$. Sia $\v \in U^\perp$. Allora
$\tilde \varphi(\pi(\v), \pi(\U)) = \tilde \varphi(\v + V^\perp, \U + V^\perp) = \varphi(\v, \U) = 0$ $\forall
\U \in U$, da cui si ricava che vale l'inclusione $U^\perp \subseteq \pi\inv(\pi(U)^\perp)$. Sia
ora $\v \in \pi\inv(\pi(U)^\perp)$, e sia $\U \in U$. Allora $\varphi(\v, \U) = \tilde \varphi(\v + V^\perp, \U + V^\perp) = \tilde \varphi(\pi(\v), \pi(\U)) = 0$, da cui vale la doppia inclusione, e dunque l'uguaglianza
desiderata, dimostrando (iii). \\
Dall'uguaglianza del punto (iii), l'applicazione della formula delle dimensioni e l'identità
ottenuta dal punto (iv) dell'\textit{Esercizio 2} rispetto al prodotto $\tilde \varphi$ non degenere, si ricavano
le seguenti identità:
\[ \system{ \dim \pi(U) = \dim U - \dim (U \cap \Ker \pi) = \dim U - \dim (U \cap V^\perp), \\ \dim \pi(U)^\perp = \dim V/V^\perp - \dim \pi(U) = \dim V - \dim V^\perp - \dim \pi(U), \\ \dim U^\perp = \dim \pi(U)^\perp + \dim \Ker \pi = \dim \pi(U)^\perp + \dim V^\perp, } \]
dalle quali si ricava la seguente identità:
\[ \dim U^\perp = \dim V - \dim V^\perp - (\dim U - \dim(U \cap V^\perp)) + \dim V^\perp, \]
\vskip 0.05in
da cui si ricava che $\dim U + \dim U^\perp = \dim V + \dim(U \cap V^\perp)$, dimostrando (iv).
\end{proof}
\begin{exercise} Sia $V$ uno spazio vettoriale dotato del prodotto $\varphi$. Si dimostri allora che $(W^\perp)^\perp = W + V^\perp$.
\end{exercise}
\begin{proof}[Soluzione]
Sia $\v = \w' + \v' \in W + V^\perp$, con $\w' \in W$ e $\v' \in V^\perp$. Sia inoltre $\w \in W^\perp$.
Allora $\varphi(\v, \w) = \varphi(\w' + \v', \w) = \varphi(\w', \w) + \varphi(\v', \w) = 0$,
dove si è usato che $\w' \perp \w$ dacché $\w \in W^\perp$ e $\w' \in W$ e che $\v' \in V^\perp$. Allora
vale l'inclusione $W + V^\perp \subseteq (W^\perp)^\perp$. \\
Applicando le rispettive formule delle dimensioni a $W^\perp$, $(W^\perp)^\perp$ e $W + V^\perp$ si ottengono le seguenti identità:
\[ \system{ \dim W^\perp = \dim V + \dim (W \cap V^\perp) - \dim W, \\ \dim (W^\perp)^\perp = \dim V + \dim (W^\perp \cap V^\perp) - \dim W^\perp, \\ \dim (W + V^\perp) = \dim W + \dim V^\perp - \dim (W \cap V^\perp), } \]
\vskip 0.05in
da cui si ricava che:
\[ \dim (W^\perp)^\perp = \dim W + \dim V^\perp - \dim (W \cap V^\perp) = \dim (W + V^\perp). \]
Dal momento che vale un'inclusione e l'uguaglianza dimensionale, si conclude che $(W^\perp)^\perp = W + V^\perp$,
da cui la tesi.
\end{proof}
\begin{exercise} Sia $A \in M(n, \CC)$ anti-hermitiana (i.e.~$A = -A^*$). Si dimostri allora che $A$
è normale e che ammette solo autovalori immaginari.
\end{exercise}
\begin{proof}[Soluzione]
Si mostra facilmente che $A$ è normale. Infatti $A A^* = A(-A) = -A^2 = (-A)A = A^* A$. Sia allora
$\lambda \in \CC$ un autovalore di $A$ e sia $\v \neq \vec 0$, $\v \in V_\lambda$. Si consideri il prodotto hermitiano
standard $\varphi$ su $\CC^n$. Allora vale la seguente identità:
\begin{gather*}
\lambda \, \varphi(\v, \v) = \varphi(\v, \lambda \v) = \varphi(\v, A \v) = \varphi(A^* \v, \v) = \\
\varphi(-A\v, \v) = \varphi(-\lambda \v, \v) = -\conj{\lambda} \, \varphi(\v, \v).
\end{gather*}
Dacché $\varphi$ è definito positivo, $\varphi(\v, \v) \neq 0 \implies \lambda = -\conj{\lambda}$. Allora
$\Re(\lambda) = \frac{\lambda + \conj{\lambda}}{2} = 0$, e quindi $\lambda$ è immaginario, da cui la tesi.
\end{proof}
\end{document} \end{document}

@ -160,6 +160,7 @@
\newcommand{\w}{\vec{w}} \newcommand{\w}{\vec{w}}
\newcommand{\U}{\vec{u}} \newcommand{\U}{\vec{u}}
\newcommand{\ww}[1]{\vec{w_{#1}}} \newcommand{\ww}[1]{\vec{w_{#1}}}
\newcommand{\uu}[1]{\vec{u_{#1}}}
\newcommand{\mapstoby}[1]{\xmapsto{#1}} \newcommand{\mapstoby}[1]{\xmapsto{#1}}
\newcommand{\oplusperp}{\oplus^\perp} \newcommand{\oplusperp}{\oplus^\perp}

Loading…
Cancel
Save