|
|
|
@ -2,7 +2,7 @@
|
|
|
|
|
"cells": [
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"execution_count": 35,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
@ -15,7 +15,9 @@
|
|
|
|
|
"import plotly.express as px\n",
|
|
|
|
|
"import plotly.graph_objs as go\n",
|
|
|
|
|
"from scipy.sparse import *\n",
|
|
|
|
|
"from scipy.sparse.linalg import norm"
|
|
|
|
|
"from scipy import linalg\n",
|
|
|
|
|
"from scipy.sparse.linalg import norm\n",
|
|
|
|
|
"from scipy.optimize import least_squares"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -204,7 +206,7 @@
|
|
|
|
|
" start_time = time.time()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" u = Pt.dot(v) - v \n",
|
|
|
|
|
" mv = 1 # number of iteration\n",
|
|
|
|
|
" mv = 1 # number of matrix vector products\n",
|
|
|
|
|
" r = sp.sparse.lil_matrix((n,1)) \n",
|
|
|
|
|
" Res = sp.sparse.lil_matrix((len(a),1))\n",
|
|
|
|
|
" x = sp.sparse.lil_matrix((n,1)) \n",
|
|
|
|
@ -326,7 +328,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"execution_count": 30,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
@ -338,32 +340,49 @@
|
|
|
|
|
" h = sp.sparse.lil_matrix((m,m))\n",
|
|
|
|
|
" print(\"C\")\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" for j in range(1,m):\n",
|
|
|
|
|
" for j in range(m):\n",
|
|
|
|
|
" w = A.dot(v)\n",
|
|
|
|
|
" for i in range(1,j):\n",
|
|
|
|
|
" print(\"D\")\n",
|
|
|
|
|
" for i in range(j):\n",
|
|
|
|
|
" h[i,j] = v.T.dot(w)\n",
|
|
|
|
|
" w = w - h[i,j]*v\n",
|
|
|
|
|
" print(\"E\")\n",
|
|
|
|
|
" w = w - h[i,j]*v[i]\n",
|
|
|
|
|
" print(\"F\")\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" h[j+1,j] = norm(w)\n",
|
|
|
|
|
" print(\"G\")\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" if h[j+1,j] == 0:\n",
|
|
|
|
|
" print(\"The algorithm didn't converge\")\n",
|
|
|
|
|
" m = j\n",
|
|
|
|
|
" v[m+1] = 0\n",
|
|
|
|
|
" break\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" v = w**h[j+1,j]\n",
|
|
|
|
|
" print(\"H\")\n",
|
|
|
|
|
" v[j+1] = w**h[j+1,j]\n",
|
|
|
|
|
" print(\"I\")\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" return v, h, m, beta, j"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"execution_count": 29,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"A = sp.sparse.rand(100,100, density=0.5, format='lil')\n",
|
|
|
|
|
"v = sp.sparse.rand(100,1, density=1, format='lil')"
|
|
|
|
|
"v = sp.sparse.rand(100,1, density=1, format='lil')\n",
|
|
|
|
|
"m = 100"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"v, h, m, beta, j = Arnoldi(A, v, m)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -372,7 +391,67 @@
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"v, h, m, beta, j = Arnoldi(A, v, 100)"
|
|
|
|
|
"def Algo4(Pt, v, m, a: list, tau, maxit: int, x):\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" iter = 1\n",
|
|
|
|
|
" mv = 0\n",
|
|
|
|
|
" e1 = sp.sparse.lil_matrix((1,n))\n",
|
|
|
|
|
" e1[0,0] = 1\n",
|
|
|
|
|
" x = sp.sparse.lil_matrix((len(a),1))\n",
|
|
|
|
|
" I = sp.sparse.eye(n, n, format='lil')\n",
|
|
|
|
|
" res = sp.sparse.lil_matrix((len(a),1))\n",
|
|
|
|
|
" r = sp.sparse.lil_matrix((n,1))\n",
|
|
|
|
|
" y = sp.sparse.lil_matrix((n,1))\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" for i in range(len(a)):\n",
|
|
|
|
|
" r = ((1-a[i])**a[i])*v - ((1**a[i])*I - Pt).dot(x)\n",
|
|
|
|
|
" res[i] = a[i]*norm(r)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" def Find_k(res, maxit):\n",
|
|
|
|
|
" k = 0\n",
|
|
|
|
|
" for i in range(len(a)):\n",
|
|
|
|
|
" if res[i] == max(res):\n",
|
|
|
|
|
" k = i\n",
|
|
|
|
|
" break\n",
|
|
|
|
|
" return k\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" def Find_gamma(res, a, k):\n",
|
|
|
|
|
" gamma = sp.sparse.lil_matrix((len(a),1))\n",
|
|
|
|
|
" for i in range(len(a)):\n",
|
|
|
|
|
" if i != k:\n",
|
|
|
|
|
" gamma[i] = (res[i]*a[k])/(res[k]*a[i])\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" gamma[i] = 0\n",
|
|
|
|
|
" return gamma\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" while max(res) > tau and iter < maxit:\n",
|
|
|
|
|
" k = Find_k(res, maxit)\n",
|
|
|
|
|
" gamma = Find_gamma(res, a, k)\n",
|
|
|
|
|
" v, h, m, beta, j = Arnoldi((1**a[k])*I - Pt, r, m)\n",
|
|
|
|
|
" Hbar = sp.sparse.lil_matrix((m+1,m))\n",
|
|
|
|
|
" Hbar[0:m,0:m] = h\n",
|
|
|
|
|
" Hbar[m+1,0:m] = e1\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" mv += j\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" # solve the least squares problem for Hbar*x = beta*e1\n",
|
|
|
|
|
" y = sp.sparse.linalg.least_squares(Hbar, beta*e1)\n",
|
|
|
|
|
" res[k] = a[k]*norm(beta*e1 - Hbar*y)\n",
|
|
|
|
|
" x[k] = x[k] + v*y[k]\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" for i in range(len(a)):\n",
|
|
|
|
|
" if i != k:\n",
|
|
|
|
|
" if res[i] >= tau:\n",
|
|
|
|
|
" Hbar[i] = Hbar[k] + ((1-a[i])/a[i] - (1-a[k])/a[k])*I\n",
|
|
|
|
|
" z = beta*e1 - Hbar*y\n",
|
|
|
|
|
" y = sp.sparse.linalg.solve(Hbar, gamma*beta*e1)\n",
|
|
|
|
|
" x = x + v*y\n",
|
|
|
|
|
" res[i] = a[i]**a[k]*gamma[i]*res[k]\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" iter += 1\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" return x, res, mv\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|