created a testing notebook for each algo
parent
1c3c69b775
commit
da82dcfa14
@ -0,0 +1,124 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import networkx as nx\n",
|
||||||
|
"import time\n",
|
||||||
|
"import math\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import scipy as sp\n",
|
||||||
|
"import plotly.express as px\n",
|
||||||
|
"import plotly.graph_objs as go\n",
|
||||||
|
"from scipy.sparse import *\n",
|
||||||
|
"from scipy import linalg\n",
|
||||||
|
"from scipy.sparse.linalg import norm\n",
|
||||||
|
"from scipy.optimize import least_squares"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Algorithm 2 testing"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def Arnoldi(A, v, m): # defined ad algorithm 2 in the paper\n",
|
||||||
|
" beta = norm(v)\n",
|
||||||
|
" print(\"A\")\n",
|
||||||
|
" v = v/beta\n",
|
||||||
|
" print(\"B\")\n",
|
||||||
|
" h = sp.sparse.lil_matrix((m,m))\n",
|
||||||
|
" print(\"C\")\n",
|
||||||
|
"\n",
|
||||||
|
" for j in range(m):\n",
|
||||||
|
" w = A.dot(v)\n",
|
||||||
|
" print(\"D\")\n",
|
||||||
|
" for i in range(j):\n",
|
||||||
|
" h[i,j] = v.T.dot(w)\n",
|
||||||
|
" print(\"E\")\n",
|
||||||
|
" w = w - h[i,j]*v[i]\n",
|
||||||
|
" print(\"F\")\n",
|
||||||
|
"\n",
|
||||||
|
" h[j+1,j] = norm(w)\n",
|
||||||
|
" print(\"G\")\n",
|
||||||
|
"\n",
|
||||||
|
" if h[j+1,j] == 0:\n",
|
||||||
|
" print(\"The algorithm didn't converge\")\n",
|
||||||
|
" m = j\n",
|
||||||
|
" v[m+1] = 0\n",
|
||||||
|
" break\n",
|
||||||
|
" else:\n",
|
||||||
|
" print(\"H\")\n",
|
||||||
|
" v[j+1] = w**h[j+1,j] # THIS IS WRONG, I DON'T KNOW HOW TO FIX IT. ERROR \" matrix is not square\"\n",
|
||||||
|
" print(\"I\")\n",
|
||||||
|
"\n",
|
||||||
|
" return v, h, m, beta, j"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Creating a small test case"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"A = sp.sparse.rand(100,100, density=0.5, format='lil')\n",
|
||||||
|
"v = sp.sparse.rand(100,1, density=0.5, format='lil')\n",
|
||||||
|
"m = 100"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"v, h, m, beta, j = Arnoldi(A, v, m)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3.10.6 64-bit",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.6"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 4,
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
@ -0,0 +1,174 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import networkx as nx\n",
|
||||||
|
"import time\n",
|
||||||
|
"import math\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import scipy as sp\n",
|
||||||
|
"import plotly.express as px\n",
|
||||||
|
"import plotly.graph_objs as go\n",
|
||||||
|
"from scipy.sparse import *\n",
|
||||||
|
"from scipy import linalg\n",
|
||||||
|
"from scipy.sparse.linalg import norm\n",
|
||||||
|
"from scipy.optimize import least_squares"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This function is needed in the algorithm. Note that this is a NON-functioning version, for now it's just a place holder. When algo2_testing will be completed, this will be updated and I'll work on algo4_testing."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def Arnoldi(A, v, m): # defined ad algorithm 2 in the paper\n",
|
||||||
|
" beta = norm(v)\n",
|
||||||
|
" print(\"A\")\n",
|
||||||
|
" v = v/beta\n",
|
||||||
|
" print(\"B\")\n",
|
||||||
|
" h = sp.sparse.lil_matrix((m,m))\n",
|
||||||
|
" print(\"C\")\n",
|
||||||
|
"\n",
|
||||||
|
" for j in range(m):\n",
|
||||||
|
" w = A.dot(v)\n",
|
||||||
|
" print(\"D\")\n",
|
||||||
|
" for i in range(j):\n",
|
||||||
|
" h[i,j] = v.T.dot(w)\n",
|
||||||
|
" print(\"E\")\n",
|
||||||
|
" w = w - h[i,j]*v[i]\n",
|
||||||
|
" print(\"F\")\n",
|
||||||
|
"\n",
|
||||||
|
" h[j+1,j] = norm(w)\n",
|
||||||
|
" print(\"G\")\n",
|
||||||
|
"\n",
|
||||||
|
" if h[j+1,j] == 0:\n",
|
||||||
|
" print(\"The algorithm didn't converge\")\n",
|
||||||
|
" m = j\n",
|
||||||
|
" v[m+1] = 0\n",
|
||||||
|
" break\n",
|
||||||
|
" else:\n",
|
||||||
|
" print(\"H\")\n",
|
||||||
|
" v[j+1] = w**h[j+1,j] # THIS IS WRONG, I DON'T KNOW HOW TO FIX IT. ERROR \" matrix is not square\"\n",
|
||||||
|
" print(\"I\")\n",
|
||||||
|
"\n",
|
||||||
|
" return v, h, m, beta, j"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Algorithm 4 testing\n",
|
||||||
|
"\n",
|
||||||
|
"Still a complete mess. Conceptually and technically wrong. I'll work on it when algo2_testing will be completed."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def Algo4(Pt, v, m, a: list, tau, maxit: int, x):\n",
|
||||||
|
" \n",
|
||||||
|
" iter = 1\n",
|
||||||
|
" mv = 0\n",
|
||||||
|
" e1 = sp.sparse.lil_matrix((1,n))\n",
|
||||||
|
" e1[0,0] = 1\n",
|
||||||
|
" x = sp.sparse.lil_matrix((len(a),1))\n",
|
||||||
|
" I = sp.sparse.eye(n, n, format='lil')\n",
|
||||||
|
" res = sp.sparse.lil_matrix((len(a),1))\n",
|
||||||
|
" r = sp.sparse.lil_matrix((n,1))\n",
|
||||||
|
" y = sp.sparse.lil_matrix((n,1))\n",
|
||||||
|
"\n",
|
||||||
|
" for i in range(len(a)): # I don't think that this is what was intended in the pseudocode... \n",
|
||||||
|
" r = ((1-a[i])**a[i])*v - ((1**a[i])*I - Pt).dot(x)\n",
|
||||||
|
" res[i] = a[i]*norm(r)\n",
|
||||||
|
"\n",
|
||||||
|
" def Find_k(res, maxit):\n",
|
||||||
|
" k = 0\n",
|
||||||
|
" for i in range(len(a)):\n",
|
||||||
|
" if res[i] == max(res):\n",
|
||||||
|
" k = i\n",
|
||||||
|
" break\n",
|
||||||
|
" return k\n",
|
||||||
|
"\n",
|
||||||
|
" def Find_gamma(res, a, k):\n",
|
||||||
|
" gamma = sp.sparse.lil_matrix((len(a),1))\n",
|
||||||
|
" for i in range(len(a)):\n",
|
||||||
|
" if i != k:\n",
|
||||||
|
" gamma[i] = (res[i]*a[k])/(res[k]*a[i])\n",
|
||||||
|
" else:\n",
|
||||||
|
" gamma[i] = 0\n",
|
||||||
|
" return gamma\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" while max(res) > tau and iter < maxit:\n",
|
||||||
|
" k = Find_k(res, maxit)\n",
|
||||||
|
" gamma = Find_gamma(res, a, k)\n",
|
||||||
|
" v, h, m, beta, j = Arnoldi((1**a[k])*I - Pt, r, m)\n",
|
||||||
|
" Hbar = sp.sparse.lil_matrix((m+1,m))\n",
|
||||||
|
" Hbar[0:m,0:m] = h\n",
|
||||||
|
" Hbar[m+1,0:m] = e1\n",
|
||||||
|
"\n",
|
||||||
|
" mv += j\n",
|
||||||
|
"\n",
|
||||||
|
" y = sp.sparse.linalg.least_squares(Hbar, beta*e1)\n",
|
||||||
|
" res[k] = a[k]*norm(beta*e1 - Hbar*y)\n",
|
||||||
|
" x[k] = x[k] + v*y[k]\n",
|
||||||
|
"\n",
|
||||||
|
" for i in range(len(a)):\n",
|
||||||
|
" if i != k:\n",
|
||||||
|
" if res[i] >= tau:\n",
|
||||||
|
" Hbar[i] = Hbar[k] + ((1-a[i])/a[i] - (1-a[k])/a[k])*I\n",
|
||||||
|
" z = beta*e1 - Hbar*y\n",
|
||||||
|
" y = sp.sparse.linalg.solve(Hbar, gamma*beta*e1)\n",
|
||||||
|
" x = x + v*y\n",
|
||||||
|
" res[i] = a[i]**a[k]*gamma[i]*res[k]\n",
|
||||||
|
" \n",
|
||||||
|
" iter += 1\n",
|
||||||
|
" \n",
|
||||||
|
" return x, res, mv\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3.10.6 64-bit",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.6"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 4,
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
Loading…
Reference in New Issue