You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

296 lines
11 KiB
Markdown

# Spazi Metrici
* [ ] [definizione] Spazio metrico
* [ ] [definizione] Distanza punto-insieme
* [ ] [definizione] Norma
* [ ] [definizione] Distanza discreta
* [ ] [definizione] Distanze $p$
* [ ] [definizione] Distanze $p$ integrali
* [ ] [definizione] Embedding isometrico
* [ ] [definizione] Isometria
* [ ] [definizione] Palla aperta
* [ ] [definizione] Continuità in un punto
* [ ] [definizione] Aperto metrico
* [ ] [**teorema**] Caratterizzazione delle continue
* [ ] [definizione] Mappa Lipschitziana
# Spazi topologici
* [ ] [definizione] Spazio topologico
* [ ] [definizione] Topologie discreta e indiscreta
* [ ] [definizione] Topologia cofinita
* [ ] [definizione] Chiuso
* [ ] [definizione] Finezza
## Equivalenza topologica di distanze e limitatezza} Consideriamo nuovamente le topologie indotte da metriche:egin{definition
* [ ] [definizione] Limitatezza
* [ ] [**proposizione**] Ogni spazio metrico ``è limitato"
## La categoria Top
* [ ] [definizione] Funzione continua
* [ ] [definizione] Omeomorfismo
## Chiusura e Parte interna
* [ ] [definizione] Chiusura
* [ ] [definizione] Parte interna
* [ ] [definizione] Frontiera
* [ ] [definizione] Punti aderenti e di accumulazione
* [ ] [**proposizione**] Caratterizzazione della chiusura
* [ ] [definizione] Insieme denso
## Basi e Prebasi
* [ ] [definizione] Topologia generata
* [ ] [definizione] Base topologica
* [ ] [**proposizione**] Caratterizzazione delle basi
* [ ] [definizione] Prebase topologica
* [ ] [**teorema**] Caratterizzazione della topologia generata
* [ ] [**proposizione**] Criterio per continuità
# Assiomi di Numerabilità e Intorni
## Intorni
* [ ] [definizione] Intorno
* [ ] [**proposizione**] Caratterizzazione di aperti/chiusi con intorni
* [ ] [definizione] Continuità in un punto
* [ ] [**proposizione**] Continua equivale a continua in ogni punto
## Sistemi fondamentali di intorni e I-numerabilità
* [ ] [definizione] Sistema fondamentale di intorni
* [ ] [definizione] I-numerabilità
* [ ] [**proposizione**] Gli spazi metrici sono I-numerabili
## II-numerabilità e Separabilità
* [ ] [definizione] II-numerabilità
* [ ] [definizione] Separabilità
* [ ] [**teorema**] II-numerabile è separabile e in metrico coincidono
* [ ] [**proposizione**] II-numerabile implica I-numerabile
## Successioni
* [ ] [definizione] Successione
* [ ] [definizione] Definitivamente e Frequentemente
* [ ] [definizione] Limite
* [ ] [definizione] Chiuso per successioni
* [ ] [**proposizione**] Chiusura e Chiusura per successioni
* [ ] [definizione] Aperto per successioni
* [ ] [**proposizione**] Parte interna e Parte interna per successioni
* [ ] [definizione] Continuità per successioni
* [ ] [**proposizione**] Continuità e Continuità per successioni
# Topologia di sottospazio
* [ ] [definizione] Topologia di sottospazio
* [ ] [**proposizione**] Caratterizzazione della topologia di sottospazio
* [ ] [**proposizione**] Aperto di un aperto e Chiuso di un chiuso
* [ ] [**proposizione**] Proprietà universale della topologia di sottospazio
* [ ] [**proposizione**] Restrizione di continua è continua
# Mappe aperte e chiuse
* [ ] [definizione] Mappe aperte e chiuse
* [ ] [definizione] Immersione topologica
* [ ] [**proposizione**] Caratterizzazione delle immersioni topologiche in aperti / chiusi
# Prodotti
* [ ] [definizione] Prodotto cartesiano
* [ ] [definizione] Diagonale
* [ ] [definizione] Topologia prodotto
* [ ] [**proposizione**] Caratterizzazione della topologia prodotto
* [ ] [definizione] Box topology
* [ ] [**proposizione**] Prodotto di chiusi è chiuso
* [ ] [**proposizione**] Prodotto finito di metrici è metrico
* [ ] [**proposizione**] Prodotto numerabile di metrici è metrico
## Proiezioni da un prodotto in un fattore
* [ ] [**teorema**] Proprietà universale del prodotto
* [ ] [**teorema**] Le proiezioni sono aperte
## Immersioni dei fattori nel prodotto
* [ ] [**proposizione**] Immersioni dei fattori nei prodotti
## Topologia della convergenza puntuale
# Assiomi di separazione
* [ ] [definizione] Assiomi di separazione
* [ ] [**proposizione**] Gli spazi metrici sono Hausdorff
* [ ] [**proposizione**] Caratterizzazione degli spazi $T_1$
* [ ] [**proposizione**] Caratterizzazione degli spazi $T_2$
* [ ] [**teorema**] Unicità del limite per Hausdorff
* [ ] [**proposizione**] Primi assiomi di separazione sono stabili per sottospazi, prodotti e raffinamenti
* [ ] [definizione] Assiomi di separazione 3 e 4
* [ ] [definizione] Regolari e Normali
* [ ] [**proposizione**] Spazi metrici sono normali
* [ ] [**proposizione**] Lemma di Urysohn
* [ ] [**proposizione**] Ereditarietà per sottospazi di $T_3$ e $T_4$
* [ ] [**proposizione**] Caratterizzazione di $T_3$ con intorni
* [ ] [**proposizione**] Prodotti di $T_3$ sono $T_3$
# Ricoprimenti fondamentali
* [ ] [definizione] Ricoprimento
* [ ] [definizione] Ricoprimento fondamentale
* [ ] [**teorema**] I ricoprimenti aperti sono fondamentali
* [ ] [**teorema**] Incollamento delle funzioni
* [ ] [definizione] Famiglia localmente finita
# Spazi connessi
* [ ] [definizione] Connessione
* [ ] [definizione] Cammino
* [ ] [definizione] Giunzione
* [ ] [definizione] Connessione per archi
* [ ] [**teorema**] Spazio connesso per archi è connesso
* [ ] [definizione] Insieme convesso
* [ ] [definizione] Intervallo
* [ ] [**teorema**] Connessi su $\R$
* [ ] [**proposizione**] Se un denso è connesso, lo spazio è connesso
* [ ] [**proposizione**] Continue preservano connessione
* [ ] [**teorema**] Prodotto finito di connessi è connesso
* [ ] [**teorema**] Prodotto finito di connessi per archi è connesso per archi
## Componenti connesse
* [ ] [**proposizione**] Unione di connessi che si intersecano è connessa
* [ ] [definizione] Componente connessa
* [ ] [definizione] Componenti connesse per archi
* [ ] [**proposizione**] Caratterizzazione delle componenti connesse per archi
* [ ] [definizione] Zero-esimo gruppo di omotopia
### Locale connessione per archi
* [ ] [**proposizione**] Componenti connesse per archi in localmente connesso per archi sono aperte e chiuse
* [ ] [**teorema**] Connesso localmente connesso per archi è connesso per archi
* [ ] [**proposizione**] Aperto in localmente connesso per archi è localmente connesso per archi
* [ ] [**proposizione**] Componenti connesse per archi di aperto in localmente connesso per archi sono aperte
# Compattezza
* [ ] [definizione] Spazio compatto
* [ ] [**teorema**] Alexander debole
* [ ] [**teorema**] Alexander
* [ ] [**teorema**] Continue mandano compatti in compatti
* [ ] [definizione] Proprietà dell'intersezione finita
* [ ] [**proposizione**] Formulazione di compattezza con i chiusi
## Sottoinsiemi compatti
* [ ] [**teorema**] Un chiuso di un compatto è compatto
* [ ] [**teorema**] Compatti in Hausdorff sono chiusi
* [ ] [**proposizione**] Compatto Hausdorff è regolare
* [ ] [**teorema**] Compatto Hausdorff è normale
* [ ] [**teorema**] Continue da compatto a $T_2$ sono chiuse
* [ ] [definizione] Funzione propria
* [ ] [**proposizione**] Proprie a immagine in loc.cpt $T_2$ sono chiuse
## Compattezza per prodotti
* [ ] [**teorema**] Tychonoff debole
* [ ] [**teorema**] Tychonoff
* [ ] [**teorema**] Wallace
## Compattificazione di Alexandroff
* [ ] [definizione] Compattificazione
* [ ] [definizione] Compattificazione di Alexandroff
* [ ] [**teorema**] La compattificazione di Alexandroff \`e una compattificazione
* [ ] [**teorema**] Unicità della compattificazione di Alexandroff
### Proiezione stereografica
* [ ] [definizione] Proiezione stereografica
## Compattezza in spazi metrici
### Compattezza e assiomi di numerabilità
* [ ] [definizione] Compattezza sequenziale
* [ ] [definizione] Spazio Lindel\"of
* [ ] [**proposizione**] I-numerabile compatto è sequenzialmente compatto
* [ ] [**proposizione**] II-numerabile implica Lindel\"of
* [ ] [**proposizione**] Compatto e sequenzialmente compatto coincidono in II-numerabile
* [ ] [**proposizione**] Compattezza e Numerabilità
### Limitatezza e Completezza
* [ ] [**proposizione**] Compatti in metrico sono limitati
* [ ] [definizione] Successione di Cauchy
* [ ] [definizione] Spazio completo
* [ ] [**proposizione**] Cauchy con sottosuccessione convergente è convergente
* [ ] [definizione] Spazio totalmente limitato
* [ ] [**proposizione**] Totalmente limitato implica limitato
* [ ] [**proposizione**] Totalmente limitato implica II-numerabile
* [ ] [**teorema**] Caratterizzazione di compattezza per metrici
### Numero di Lebesgue e Uniforme continuità
* [ ] [definizione] Numero di Lebesgue
* [ ] [**teorema**] Ogni ricoprimento aperto in compatto ammette numero di Lebesgue
* [ ] [definizione] Funzione uniformemente continua
* [ ] [**teorema**] Heine-Cantor
* [ ] [**teorema**] Estensione di uniformemente continua alla chiusura del dominio
### Compattezza in $\R^n$
* [ ] [**teorema**] Heine-Borel
* [ ] [**teorema**] Weierstrass
* [ ] [**teorema**] Equivalenza delle norme su $\R^n$
# Topologia Quoziente
* [ ] [definizione] Spazio quoziente
* [ ] [**proposizione**] Esistenza e unicit\`a dello spazio quoziente
* [ ] [definizione] Topologia quoziente
* [ ] [**teorema**] Caratterizzazione della topologia quoziente
## Passaggio a quoziente e Identificazioni
* [ ] [definizione] Funzioni ottenute per passaggio a quoziente
* [ ] [definizione] Identificazione
* [ ] [**teorema**] Identificazione induce omeomorfismo per quoziente
* [ ] [**proposizione**] Criterio sufficiente per definire identificazioni
## Insiemi saturi
* [ ] [definizione] Insieme saturo
* [ ] [**proposizione**] Gli $f-$saturi sono le preimmagini tramite $f$
* [ ] [**proposizione**] Caratterizzazione di aperti e chiusi saturi
## Collassamento, Unione disgiunta e Bouquet
* [ ] [definizione] Collassamento
* [ ] [definizione] Unione disgiunta
* [ ] [definizione] Bouquet
* [ ] [**proposizione**] I fattori si immergono nel bouquet
* [ ] [**proposizione**] $T_1$ passa al bouquet e immersioni sono chiuse
* [ ] [**proposizione**] $T_2$ passa al bouquet
* [ ] [**proposizione**] Bouquet \`e compatto se e solo se lo sono i fattori
* [ ] [**proposizione**] Bouquet \`e connesso se e solo se lo sono i fattori
# Quozienti per azioni di gruppi
* [ ] [definizione] Azione
* [ ] [definizione] Orbita e stabilizzatore
* [ ] [definizione] Azione continua
* [ ] [**proposizione**] Proiezioni per quozienti per azione
## Assiomi di Separazione e Azioni
* [ ] [definizione] Azioni vaganti, propriamente discontinue e proprie
* [ ] [**teorema**] Caratterizzazione di azioni propriamente discontinue su $T_2$
* [ ] [**teorema**] Caratterizzazione azioni proprie su localmente compatti
* [ ] [**teorema**] Criterio sufficiente per quoziente per azione $T_2$
## Domini fondamentali
* [ ] [definizione] Dominio fondamentale
* [ ] [**teorema**] Localmente compatto con dominio fondamentale
# Topologia dei Proiettivi
## Caso Reale
* [ ] [**teorema**] Proiettivi reali come identificazione antipodale di una sfera
* [ ] [**teorema**] Proiettivi reali come identificazione sul bordo di disco
## Caso Complesso
* [ ] [**proposizione**] Le carte affini sono omeomorfismi
## Variet\`a topologiche
* [ ] [definizione] Variet\`a topologica
# Appendice al capitolo 2
## Esempi e controesempi
### Spazi topologici
### Assiomi di numerabilit\`a
### Prodotti
### Assiomi di separazione
* [ ] [definizione] Retta di Sorgenfrey
### Ricoprimenti
### Connessi
### Compattezza
### Quozienti