|
|
|
@ -502,8 +502,8 @@ def create_random_graphs(G: nx.Graph, model = None, save = True) -> nx.Graph:
|
|
|
|
|
if model == "erdos_renyi":
|
|
|
|
|
G_random = nx.erdos_renyi_graph(G.number_of_nodes(), nx.density(G))
|
|
|
|
|
print("Creating a random graph with the Erdos-Renyi model {}" .format(G.name))
|
|
|
|
|
print("Number of edges in the original graph: {}" .format(G.number_of_edges()))
|
|
|
|
|
print("Number of edges in the random graph: {}" .format(G_random.number_of_edges()))
|
|
|
|
|
# print("Number of edges in the original graph: {}" .format(G.number_of_edges()))
|
|
|
|
|
# print("Number of edges in the random graph: {}" .format(G_random.number_of_edges()))
|
|
|
|
|
G_random.name = G.name + " Erdos-Renyi"
|
|
|
|
|
|
|
|
|
|
if save:
|
|
|
|
@ -520,8 +520,8 @@ def create_random_graphs(G: nx.Graph, model = None, save = True) -> nx.Graph:
|
|
|
|
|
p = G.number_of_edges() / (G.number_of_nodes())
|
|
|
|
|
avg_degree = int(np.mean([d for n, d in G.degree()]))
|
|
|
|
|
G_random = nx.watts_strogatz_graph(G.number_of_nodes(), avg_degree, p)
|
|
|
|
|
print("Number of edges in the original graph: {}" .format(G.number_of_edges()))
|
|
|
|
|
print("Number of edges in the random graph: {}" .format(G_random.number_of_edges()))
|
|
|
|
|
# print("Number of edges in the original graph: {}" .format(G.number_of_edges()))
|
|
|
|
|
# print("Number of edges in the random graph: {}" .format(G_random.number_of_edges()))
|
|
|
|
|
G_random.name = G.name + " Watts-Strogatz"
|
|
|
|
|
|
|
|
|
|
if save:
|
|
|
|
@ -635,7 +635,7 @@ def random_sample(graph: nx.Graph, k: float) -> nx.Graph:
|
|
|
|
|
The graph to sample
|
|
|
|
|
|
|
|
|
|
`k`: float
|
|
|
|
|
The percentage of nodes to sample from the graph.
|
|
|
|
|
The percentage of nodes to remove from the graph
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
@ -644,8 +644,7 @@ def random_sample(graph: nx.Graph, k: float) -> nx.Graph:
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
nodes = list(graph.nodes())
|
|
|
|
|
n = int(k*len(nodes))
|
|
|
|
|
nodes_sample = random.sample(nodes, n)
|
|
|
|
|
nodes_sample = np.random.choice(nodes, size=int((1-k)*len(nodes)), replace=False)
|
|
|
|
|
|
|
|
|
|
G = graph.subgraph(nodes_sample)
|
|
|
|
|
|
|
|
|
@ -654,8 +653,6 @@ def random_sample(graph: nx.Graph, k: float) -> nx.Graph:
|
|
|
|
|
connected = max(nx.connected_components(G), key=len)
|
|
|
|
|
G_connected = graph.subgraph(connected)
|
|
|
|
|
|
|
|
|
|
print(nx.is_connected(G_connected))
|
|
|
|
|
|
|
|
|
|
print("Number of nodes in the sampled graph: ", G.number_of_nodes())
|
|
|
|
|
print("Number of edges in the sampled graph: ", G.number_of_edges())
|
|
|
|
|
|
|
|
|
|