You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
import TestGame.Metadata
|
|
|
|
|
|
|
|
|
|
import Mathlib.Data.Set.Basic
|
|
|
|
|
|
|
|
|
|
Game "TestGame"
|
|
|
|
|
World "SetTheory"
|
|
|
|
|
Level 9
|
|
|
|
|
|
|
|
|
|
Title "Komplement"
|
|
|
|
|
|
|
|
|
|
Introduction
|
|
|
|
|
"
|
|
|
|
|
Das Komplement einer Menge wird als `Aᶜ` (`\\^c`) geschrieben. Wichtige Lemmas
|
|
|
|
|
sind `not_mem_compl_iff` und `compl_eq_univ_diff`.
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
open Set
|
|
|
|
|
|
|
|
|
|
#check not_mem_compl_iff
|
|
|
|
|
#check compl_eq_univ_diff
|
|
|
|
|
|
|
|
|
|
Statement
|
|
|
|
|
""
|
|
|
|
|
(A : Set ℕ) (h : Aᶜ ⊆ A) : A = univ := by
|
|
|
|
|
apply Subset.antisymm
|
|
|
|
|
simp only [subset_univ]
|
|
|
|
|
intros x hx
|
|
|
|
|
by_cases h4 : x ∈ Aᶜ
|
|
|
|
|
exact mem_of_subset_of_mem h h4
|
|
|
|
|
rw [←not_mem_compl_iff]
|
|
|
|
|
exact h4
|
|
|
|
|
|
|
|
|
|
NewTactic constructor intro rw assumption rcases simp tauto trivial
|