You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/testgame/TestGame/LemmaDocs.lean

92 lines
1.7 KiB
Plaintext

import GameServer.Commands
-- Wird im Level "Implication 11" ohne Beweis angenommen.
LemmaDoc not_not as not_not in "Logic"
"
### Aussage
`¬¬A ↔ A`
### Annahmen
`(A : Prop)`
"
-- Wird im Level "Implication 10" ohne Beweis angenommen.
LemmaDoc not_or_of_imp as not_or_of_imp in "Logic"
"
### Aussage
`¬A B`
### Annahmen
`(A B : Prop)`\\
`(h : A → B)`
"
-- Wird im Level "Implication 12" bewiesen.
LemmaDoc imp_iff_not_or as imp_iff_not_or in "Logic"
"
### Aussage
`(A → B) ↔ ¬A B`
### Annahmen
`(A B : Prop)`
"
LemmaDoc zero_add as zero_add in "Addition"
"This lemma says `∀ a : , 0 + a = a`."
LemmaDoc add_zero as add_zero in "Addition"
"This lemma says `∀ a : , a + 0 = a`."
LemmaDoc add_succ as add_succ in "Addition"
"This lemma says `∀ a b : , a + succ b = succ (a + b)`."
LemmaSet addition : "Addition lemmas" :=
zero_add add_zero
2 years ago
LemmaDoc not_forall as not_forall in "Logic"
"`∀ (A : Prop), ¬(∀ x, A) ↔ ∃x, (¬A)`."
2 years ago
LemmaDoc not_exists as not_exists in "Logic"
"`∀ (A : Prop), ¬(∃ x, A) ↔ ∀x, (¬A)`."
LemmaDoc even as even in "Nat"
"
`even n` ist definiert als `∃ r, a = 2 * r`.
Die Definition kann man mit `unfold even at *` einsetzen.
"
LemmaDoc odd as odd in "Nat"
"
`odd n` ist definiert als `∃ r, a = 2 * r + 1`.
Die Definition kann man mit `unfold odd at *` einsetzen.
"
LemmaDoc not_odd as not_odd in "Nat"
"`¬ (odd n) ↔ even n`"
LemmaDoc not_even as not_even in "Nat"
"`¬ (even n) ↔ odd n`"
LemmaDoc even_square as even_square in "Nat"
"`∀ (n : ), even n → even (n ^ 2)`"
LemmaSet natural : "Natürliche Zahlen" :=
even odd not_odd not_even
LemmaSet logic : "Logik" :=
2 years ago
not_not not_forall not_exists