You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/testgame/TestGame/Levels/SetTheory/T01_Set.lean

297 lines
8.4 KiB
Plaintext

2 years ago
import TestGame.Metadata
import Mathlib.Order.SymmDiff
import Mathlib.Logic.Function.Iterate
import Mathlib.Tactic.Use
import Mathlib.Tactic.SolveByElim
import Mathlib.Tactic.Tauto
import Mathlib.Tactic.ByContra
import Mathlib.Tactic.Lift
import Mathlib.Data.Set.Basic
import Mathlib.Data.Finset.Powerset
import Mathlib.Tactic.LibrarySearch
2 years ago
import Mathlib
set_option tactic.hygienic false
Game "TestGame"
World "SetTheory"
Level 1
Title "Mengen"
Introduction
"
In diesem Kapitel schauen wir uns Mengen an.
Zuerst ein ganz wichtiger Punkt: Alle Mengen in Lean sind homogen. Das heisst,
alle Elemente in einer Menge haben den gleichen Typ.
Zum Beispiel `{1, 4, 6}` ist eine Menge von natürlichen Zahlen. Aber man kann keine
Menge `{(2 : ), {3, 1}, \"e\", (1 : )}` definieren, da die Elemente unterschiedliche Typen haben.
Für einen Typen `{X : Type*}` definiert damit also `set X` der Type aller Mengen mit Elementen aus
`X`. `set.univ` ist dann ganz `X` also Menge betrachtet, und es ist wichtig den Unterschied
zu kennen: `(univ : set X)` und `(X : Typ*)` haben nicht den gleichen Typ und sind damit auch nicht
austauschbar!
Am anderen Ende sitzt die leere Menge `(∅ : set X)` (`\\empty`). Bei `univ` und `∅` versucht Lean
automatisch den Typ zu erraten, in exotischen Beispielen muss man wie oben diesen explizit angeben.
Als erste Operationen schauen wir uns `` (`\\union` oder `\\cup`), `∩`
(`\\inter` oder `\\cap`) und `\\` (`\\\\` oder `\\ `)
"
open Set
Statement
"Wenn $B$ wahr ist, dann ist die Implikation $A \\Rightarrow (A ∧ B)$ wahr."
{X : Type _} {A B : Set X} : univ \ (A ∩ B) ∅ = (univ \ A) (univ \ B) (A \ B) := by
rw [Set.diff_inter]
rw [Set.union_empty]
rw [Set.union_assoc]
rw [←Set.union_diff_distrib]
rw [Set.univ_union]
NewTactics rw
example : 4 ∈ (univ : Set ) := by
trivial
example (A : Set ) : 4 ∉ (∅ : Set ) := by
trivial
example (A : Set ) : A ⊆ univ := by
intro x h
trivial
-- -- subset_empty_iff
-- example {s : Set α} : s ⊆ ∅ ↔ s = ∅ := by
-- constructor
-- intro h
-- rw [Subset.antisymm_iff]
-- constructor
-- assumption
-- simp only [empty_subset]
-- intro a
-- rw [Subset.antisymm_iff] at a
-- rcases a with ⟨h₁, h₂⟩
-- assumption
-- -- eq_empty_iff_forall_not_mem
-- example {s : Set α} : s = ∅ ↔ ∀ x, x ∉ s := by
-- rw [←subset_empty_iff]
-- rfl
-- -- nonempty_iff_ne_empty
-- example (X : Type _) (s : Set X) : Set.Nonempty s ↔ s ≠ ∅ := by
-- rw [Set.Nonempty]
-- rw [ne_eq, eq_empty_iff_forall_not_mem]
-- push_neg
-- rfl
-- example (A B : ): A = B ↔ A ≤ B ∧ B ≤ A := by library_search
namespace Finset
theorem powerset_singleton {U : Type _} [DecidableEq U] (x : U) :
Finset.powerset {x} = {∅, {x}} := by
ext y
rw [mem_powerset, subset_singleton_iff, mem_insert, mem_singleton]
end Finset
/- The powerset of a singleton contains only `∅` and the singleton. -/
theorem powerset_singleton {U : Type _} (x : U) :
𝒫 ({x} : Set U) = {∅, {x}} := by
ext y
rw [mem_powerset_iff, subset_singleton_iff_eq]
rw [mem_insert_iff, mem_singleton_iff]
lemma mem_powerset_insert_iff {U : Type _} (A S : Set U) (x : U) :
S ∈ 𝒫 (insert x A) ↔ S \ {x} ∈ 𝒫 A := by
rw [mem_powerset_iff, mem_powerset_iff, diff_singleton_subset_iff]
-- lemma powerset_insert {U : Type _} (A : Set U) (x : U) :
-- 𝒫 (insert x A) = 𝒫 A ({B : Set U | B \ {x} ∈ 𝒫 A}) := by
-- sorry
theorem subset_insert_iff_of_not_mem {U : Type _ }{s t : Set U} (h : a ∉ s) : s ⊆ insert a t ↔ s ⊆ t := by
rw [subset_insert_iff, erase_eq_of_not_mem h]
lemma mem_powerset_insert_iff₂ {U : Type _} (A S : Set U) (x : U) :
S ∈ 𝒫 (insert x A) ↔ S ∈ 𝒫 A ∃ B ∈ 𝒫 A , insert x B = S := by
simp_rw [mem_powerset_iff]
constructor
· intro h
by_cases hs : x ∈ S
· sorry
· left
rw [Finset.subset_insert_iff_of_not_mem]
· intro h
rcases h with h | ⟨B, h₁, h₂⟩
· exact le_trans h (subset_insert x A)
· rw [←h₂]
exact insert_subset_insert h₁
lemma powerset_insert {U : Type _} (A : Set U) (x : U) :
𝒫 (insert x A) = A.powerset A.powerset.image (insert x) := by
rw [Subset.antisymm_iff]
constructor <;>
intro B hB <;>
simp_rw [mem_powerset_insert_iff₂, mem_union, mem_image] at hB ⊢ <;>
assumption
example : powerset {0, 1} = {∅, {0}, {1}, {0, 1}} := by
simp_rw [powerset_insert, powerset_singleton, Finset.powerset_insert, Finset.powerset_singleton]
simp only [image_insert_eq, union_insert, image_singleton, union_singleton]
simp only [insert_comm, ←insert_emptyc_eq]
example [DecidableEq ] : Finset.powerset {0, 1} = {∅, {0}, {1}, {0, 1}} := by
repeat' rw [@ Finset.powerset_insert ]
repeat' rw [@Finset.powerset_singleton ]
--simp only [image_insert_eq, union_insert, image_singleton, union_singleton]
example : powerset {0, 1, 2, 4} =
{∅, {0}, {1}, {0, 1}, {2}, {1, 2}, {0, 2}, {0, 1, 2},
{4}, {0, 4}, {1, 4}, {0, 1, 4}, {2, 4}, {1, 2, 4}, {0, 2, 4}, {0, 1, 2, 4}} := by
simp_rw [powerset_insert, powerset_singleton]
simp_rw [image_insert_eq, image_singleton]
example : Finset.powerset ({0, 1} : Finset ) = {{0, 1}, ∅, {1}, {0}} := by
have h : Finset.powerset ({0, 1} : Finset ) = {∅, {0}, {1}, {0, 1}}
rfl
rw [h]
simp only []
example : ({∅, {0}, {1}, {0, 1}} : Finset (Finset )) = {∅, {1}, {0}, {0, 1}} := by
simp only []
lemma subset_of_subset_diff {U : Type _} (A B C : Set U) (h : A ⊆ B \ C) : A ⊆ B :=
fun _ hx => mem_of_mem_diff (h hx)
lemma subset_of_subset_diff' {U : Type _} (A B C : Set U) (h : A ⊆ B) : A \ C ⊆ B :=
sorry
lemma mem_powerset' {U : Type _} {A B C : Set U}
(h' : B ∈ 𝒫 C) (h : A ⊆ B) :
A ∈ 𝒫 C := by
rw [mem_powerset_iff] at h' ⊢
exact le_trans h h'
example (A B : Set ) : A = B ↔ ∀ x, x ∈ A ↔ x ∈ B := by
exact ext_iff
lemma NO.powerset_insert {U : Type _} (A : Set U) (x : U) :
𝒫 (insert x A) = 𝒫 A ({insert x B | B ∈ 𝒫 A}) := by
ext y
rw [mem_powerset_insert_iff]
constructor
· intro h
rw [mem_union, mem_setOf]
by_cases hx : x ∈ y
· right
use y \ {x}
constructor
· assumption
· rw [insert_diff_singleton, insert_eq_of_mem hx]
· left
rw [diff_singleton_eq_self hx] at h
assumption
· intro h
rw [mem_union, mem_setOf] at h
rcases h with h | h
· apply mem_powerset' h
simp
· rcases h with ⟨B, hB⟩
rw [←hB.2]
apply mem_powerset' hB.1
simp
-- lemma xxx {U : Type _} (x y : U):
-- ({insert x B | B ∈ {∅, }}) = {({x} : Set U), {x, y}} := by
-- sorry
-- lemma hh {U : Type _} (A : Set U) (x : U) :
-- A \ {x} ∈
lemma diff_singleton_eq_iff {U : Type _} {A B : Set U} {x : U} :
A \ {x} = B ↔ A = B A = insert x B := by sorry
lemma x1 {U : Type _} (x : U) : insert x (∅ : Set U) = {x} := by sorry
--set_option maxHeartbeats 20000
example {U : Type _} {x y : U} : ({x, y} : Set U) = {y, x} := by
exact pair_comm x y
example {U : Type _} {A : Set U} {x y : U} : insert x (insert y A) = insert y (insert x A) := by
exact insert_comm x y A
open Classical
#check decide
example : ({{0, 2}, {3, 5, 6}} : Set (Set )) = {{2, 0}, {5, 3, 6}} := by
rw [Subset.antisymm_iff]
constructor <;>
intro A hA <;>
simp_rw [mem_insert_iff, mem_singleton_iff] at *
· rw [pair_comm 2 0, insert_comm 5 3]
tauto
· rw [pair_comm 0 2, insert_comm 3 5]
tauto
example (A : Set ) : ({{0, 2}, A, {3, 5, 6}} : Set (Set )) = {{2, 0}, {5, 3, 6}, A} := by
simp only [insert_comm, ←insert_emptyc_eq]
example : ({{0, 2}, {3, 5, 6}} : Finset (Finset )) = {{2, 0}, {5, 3, 6}} := by
simp only
-- -- This works but does not scale well
-- ext x
-- simp_rw [powerset_insert, powerset_singleton]
-- simp_rw [mem_union, mem_setOf, mem_insert_iff, mem_singleton_iff]
-- simp_rw [diff_singleton_eq_iff, x1]
-- tauto
-- rw [Subset.antisymm_iff]
-- constructor
-- intro A hA
-- rw [mem_powerset_iff] at hA
-- simp_rw [mem_insert_iff, mem_singleton_iff] at *
example : ({2, 3, 5} : Set ) ⊆ {4, 2, 5, 7, 3} := by
intro a ha
simp_rw [Set.mem_insert_iff, Set.mem_singleton_iff] at *
tauto
example : ({0} : Set ) {1, 2} = {0, 2, 1} := by
rw [Subset.antisymm_iff]
intro A hA
--rw [Set.mem_insert_iff]
-- Trick:
-- attribute [default_instance] Set.instSingletonSet