You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/nng/NNG/Modifications/Tactics.lean

132 lines
4.3 KiB
Plaintext

2 years ago
import Mathlib.Lean.Expr.Basic
import NNG.MyNat.Addition
import Lean.Elab.Tactic.Basic
/-!
# Modified `rw`
Modify `rw` to work like `rewrite`.
This is mainly a copy of the implementation of `rewrite` in Lean core.
-/
namespace MyNat
open Lean.Meta Lean.Elab.Tactic Lean.Parser.Tactic
/--
Modified `rw` tactic. For this game, `rw` works exactly like `rewrite`.
-/
syntax (name := rewriteSeq) "rw" (config)? rwRuleSeq (location)? : tactic
@[tactic MyNat.rewriteSeq] def evalRewriteSeq : Tactic := fun stx => do
let cfg ← elabRewriteConfig stx[1]
let loc := expandOptLocation stx[3]
withRWRulesSeq stx[0] stx[2] fun symm term => do
withLocation loc
(rewriteLocalDecl term symm · cfg)
(rewriteTarget term symm cfg)
(throwTacticEx `rewrite · "did not find instance of the pattern in the current goal")
/-!
# Modified `induction` tactic
Modify `induction` tactic to always show `(0 : MyNat)` instead of `MyNat.zero` and
2 years ago
to support the lean3-style `with` keyword.
2 years ago
This is mainly copied and modified from the mathlib-tactic `induction'`.
-/
def rec' {P : → Prop} (zero : P 0)
(succ : (n : ) → (n_ih : P n) → P (succ n)) (t : ) : P t := by
induction t with
| zero => assumption
| succ n =>
apply succ
assumption
end MyNat
namespace Lean.Parser.Tactic
open Meta Elab Elab.Tactic
open private getAltNumFields in evalCases ElimApp.evalAlts.go in
def ElimApp.evalNames (elimInfo : ElimInfo) (alts : Array ElimApp.Alt) (withArg : Syntax)
(numEqs := 0) (numGeneralized := 0) (toClear : Array FVarId := #[]) :
TermElabM (Array MVarId) := do
let mut names : List Syntax := withArg[1].getArgs |>.toList
let mut subgoals := #[]
for { name := altName, mvarId := g, .. } in alts do
let numFields ← getAltNumFields elimInfo altName
let (altVarNames, names') := names.splitAtD numFields (Unhygienic.run `(_))
names := names'
let (fvars, g) ← g.introN numFields <| altVarNames.map (getNameOfIdent' ·[0])
let some (g, subst) ← Cases.unifyEqs? numEqs g {} | pure ()
let (_, g) ← g.introNP numGeneralized
let g ← liftM $ toClear.foldlM (·.tryClear) g
for fvar in fvars, stx in altVarNames do
g.withContext <| (subst.apply <| .fvar fvar).addLocalVarInfoForBinderIdent ⟨stx⟩
subgoals := subgoals.push g
pure subgoals
open private getElimNameInfo generalizeTargets generalizeVars in evalInduction in
/--
Modified `induction` tactic for this game.
Usage: `induction n with d hd`.
*(The actual `induction` tactic has a more complex `with`-argument that works differently)*
-/
elab (name := _root_.MyNat.induction) "induction " tgts:(casesTarget,+)
withArg:((" with " (colGt binderIdent)+)?)
: tactic => do
let targets ← elabCasesTargets tgts.1.getSepArgs
let g :: gs ← getUnsolvedGoals | throwNoGoalsToBeSolved
g.withContext do
let elimInfo ← getElimInfo `MyNat.rec'
let targets ← addImplicitTargets elimInfo targets
evalInduction.checkTargets targets
let targetFVarIds := targets.map (·.fvarId!)
g.withContext do
let forbidden ← mkGeneralizationForbiddenSet targets
let mut s ← getFVarSetToGeneralize targets forbidden
let (fvarIds, g) ← g.revert (← sortFVarIds s.toArray)
let result ← withRef tgts <| ElimApp.mkElimApp elimInfo targets (← g.getTag)
let elimArgs := result.elimApp.getAppArgs
ElimApp.setMotiveArg g elimArgs[elimInfo.motivePos]!.mvarId! targetFVarIds
g.assign result.elimApp
let subgoals ← ElimApp.evalNames elimInfo result.alts withArg
(numGeneralized := fvarIds.size) (toClear := targetFVarIds)
setGoals <| (subgoals ++ result.others).toList ++ gs
end Lean.Parser.Tactic
/-! # `rfl` tactic
Added `withReducible` to prevent `rfl` proving stuff like `n + 0 = n`.
-/
namespace MyNat
open Lean Meta Elab Tactic
-- @[match_pattern] def MyNat.rfl {α : Sort u} {a : α} : Eq a a := Eq.refl a
/-- Modified `rfl` tactic.
`rfl` closes goals of the form `A = A`.
Note that teh version for this game is somewhat weaker than the real one. -/
syntax (name := rfl) "rfl" : tactic
@[tactic MyNat.rfl] def evalRfl : Tactic := fun _ =>
liftMetaTactic fun mvarId => do withReducible <| mvarId.refl; pure []
-- @[tactic MyNat.rfl] def evalRfl : Tactic := fun _ =>
-- liftMetaTactic fun mvarId => do mvarId.refl; pure []
-- (with_reducible rfl)
end MyNat