You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/nng/NNG/Modifications/Tactics.lean

132 lines
4.3 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Lean.Expr.Basic
import NNG.MyNat.Addition
import Lean.Elab.Tactic.Basic
/-!
# Modified `rw`
Modify `rw` to work like `rewrite`.
This is mainly a copy of the implementation of `rewrite` in Lean core.
-/
namespace MyNat
open Lean.Meta Lean.Elab.Tactic Lean.Parser.Tactic
/--
Modified `rw` tactic. For this game, `rw` works exactly like `rewrite`.
-/
syntax (name := rewriteSeq) "rw" (config)? rwRuleSeq (location)? : tactic
@[tactic MyNat.rewriteSeq] def evalRewriteSeq : Tactic := fun stx => do
let cfg ← elabRewriteConfig stx[1]
let loc := expandOptLocation stx[3]
withRWRulesSeq stx[0] stx[2] fun symm term => do
withLocation loc
(rewriteLocalDecl term symm · cfg)
(rewriteTarget term symm cfg)
(throwTacticEx `rewrite · "did not find instance of the pattern in the current goal")
/-!
# Modified `induction` tactic
Modify `induction` tactic to always show `(0 : MyNat)` instead of `MyNat.zero` and
to support the lean3-style `with` keyword.
This is mainly copied and modified from the mathlib-tactic `induction'`.
-/
def rec' {P : → Prop} (zero : P 0)
(succ : (n : ) → (n_ih : P n) → P (succ n)) (t : ) : P t := by
induction t with
| zero => assumption
| succ n =>
apply succ
assumption
end MyNat
namespace Lean.Parser.Tactic
open Meta Elab Elab.Tactic
open private getAltNumFields in evalCases ElimApp.evalAlts.go in
def ElimApp.evalNames (elimInfo : ElimInfo) (alts : Array ElimApp.Alt) (withArg : Syntax)
(numEqs := 0) (numGeneralized := 0) (toClear : Array FVarId := #[]) :
TermElabM (Array MVarId) := do
let mut names : List Syntax := withArg[1].getArgs |>.toList
let mut subgoals := #[]
for { name := altName, mvarId := g, .. } in alts do
let numFields ← getAltNumFields elimInfo altName
let (altVarNames, names') := names.splitAtD numFields (Unhygienic.run `(_))
names := names'
let (fvars, g) ← g.introN numFields <| altVarNames.map (getNameOfIdent' ·[0])
let some (g, subst) ← Cases.unifyEqs? numEqs g {} | pure ()
let (_, g) ← g.introNP numGeneralized
let g ← liftM $ toClear.foldlM (·.tryClear) g
for fvar in fvars, stx in altVarNames do
g.withContext <| (subst.apply <| .fvar fvar).addLocalVarInfoForBinderIdent ⟨stx⟩
subgoals := subgoals.push g
pure subgoals
open private getElimNameInfo generalizeTargets generalizeVars in evalInduction in
/--
Modified `induction` tactic for this game.
Usage: `induction n with d hd`.
*(The actual `induction` tactic has a more complex `with`-argument that works differently)*
-/
elab (name := _root_.MyNat.induction) "induction " tgts:(casesTarget,+)
withArg:((" with " (colGt binderIdent)+)?)
: tactic => do
let targets ← elabCasesTargets tgts.1.getSepArgs
let g :: gs ← getUnsolvedGoals | throwNoGoalsToBeSolved
g.withContext do
let elimInfo ← getElimInfo `MyNat.rec'
let targets ← addImplicitTargets elimInfo targets
evalInduction.checkTargets targets
let targetFVarIds := targets.map (·.fvarId!)
g.withContext do
let forbidden ← mkGeneralizationForbiddenSet targets
let mut s ← getFVarSetToGeneralize targets forbidden
let (fvarIds, g) ← g.revert (← sortFVarIds s.toArray)
let result ← withRef tgts <| ElimApp.mkElimApp elimInfo targets (← g.getTag)
let elimArgs := result.elimApp.getAppArgs
ElimApp.setMotiveArg g elimArgs[elimInfo.motivePos]!.mvarId! targetFVarIds
g.assign result.elimApp
let subgoals ← ElimApp.evalNames elimInfo result.alts withArg
(numGeneralized := fvarIds.size) (toClear := targetFVarIds)
setGoals <| (subgoals ++ result.others).toList ++ gs
end Lean.Parser.Tactic
/-! # `rfl` tactic
Added `withReducible` to prevent `rfl` proving stuff like `n + 0 = n`.
-/
namespace MyNat
open Lean Meta Elab Tactic
-- @[match_pattern] def MyNat.rfl {α : Sort u} {a : α} : Eq a a := Eq.refl a
/-- Modified `rfl` tactic.
`rfl` closes goals of the form `A = A`.
Note that teh version for this game is somewhat weaker than the real one. -/
syntax (name := rfl) "rfl" : tactic
@[tactic MyNat.rfl] def evalRfl : Tactic := fun _ =>
liftMetaTactic fun mvarId => do withReducible <| mvarId.refl; pure []
-- @[tactic MyNat.rfl] def evalRfl : Tactic := fun _ =>
-- liftMetaTactic fun mvarId => do mvarId.refl; pure []
-- (with_reducible rfl)
end MyNat