|
|
|
@ -16,11 +16,32 @@ Introduction
|
|
|
|
|
|
|
|
|
|
open BigOperators
|
|
|
|
|
|
|
|
|
|
lemma arithmetic_sum (n : ℕ) : 2 * (∑ i : Fin (n + 1), ↑i) = n * (n + 1) := by
|
|
|
|
|
induction' n with n hn
|
|
|
|
|
simp
|
|
|
|
|
rw [Fin.sum_univ_castSucc]
|
|
|
|
|
rw [mul_add]
|
|
|
|
|
simp
|
|
|
|
|
rw [mul_add, hn]
|
|
|
|
|
simp_rw [Nat.succ_eq_one_add]
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statement
|
|
|
|
|
"Zeige $\\sum_{i = 0}^n i^3 = (\\sum_{i = 0}^n i^3)^2$."
|
|
|
|
|
"Zeige $\\sum_{i = 0}^n i^3 = (\\sum_{i = 0}^n i)^2$."
|
|
|
|
|
(n : ℕ) : (∑ i : Fin (n + 1), (i : ℕ)^3) = (∑ i : Fin (n + 1), (i : ℕ))^2 := by
|
|
|
|
|
induction n
|
|
|
|
|
induction' n with n hn
|
|
|
|
|
simp
|
|
|
|
|
sorry
|
|
|
|
|
conv_rhs =>
|
|
|
|
|
rw [Fin.sum_univ_castSucc]
|
|
|
|
|
simp
|
|
|
|
|
rw [add_pow_two]
|
|
|
|
|
rw [arithmetic_sum]
|
|
|
|
|
rw [mul_assoc, add_assoc, ←pow_two, ←Nat.succ_mul n, Nat.succ_eq_add_one, ←pow_succ]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
rw [Fin.sum_univ_castSucc]
|
|
|
|
|
simp
|
|
|
|
|
rw [hn]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tactics ring
|
|
|
|
|