levels
parent
4d1d97a164
commit
4ae7e0eab6
@ -0,0 +1,87 @@
|
||||
import GameServer.Commands
|
||||
|
||||
/-! ## Definitions -/
|
||||
|
||||
DefinitionDoc Even as "Even"
|
||||
"
|
||||
`even n` ist definiert als `∃ r, a = 2 * r`.
|
||||
Die Definition kann man mit `unfold even at *` einsetzen.
|
||||
## Eigenschaften
|
||||
|
||||
* Mathlib Doc: [#Even](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Parity.html#Even)"
|
||||
|
||||
DefinitionDoc Odd as "Odd"
|
||||
"
|
||||
`odd n` ist definiert als `∃ r, a = 2 * r + 1`.
|
||||
Die Definition kann man mit `unfold odd at *` einsetzen.
|
||||
|
||||
* Mathlib Doc: [Odd](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Parity.html#Odd)"
|
||||
|
||||
DefinitionDoc Injective as "Injective"
|
||||
"
|
||||
`Injective f` ist definiert als
|
||||
|
||||
```
|
||||
∀ a b, f a = f b → a = b
|
||||
```
|
||||
definiert.
|
||||
|
||||
* Mathlib Doc: [Injective](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Function.html#Function.Injective)"
|
||||
|
||||
DefinitionDoc Surjective as "Surjective"
|
||||
"
|
||||
`Surjective f` ist definiert als
|
||||
|
||||
```
|
||||
∀ a, (∃ b, f a = b)
|
||||
```
|
||||
|
||||
* Mathlib Doc: [Surjective](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Function.html#Function.Surjective)"
|
||||
|
||||
DefinitionDoc Bijective as "Bijective"
|
||||
"
|
||||
|
||||
## Eigenschaften
|
||||
|
||||
* Mathlib Doc: [#Bijective](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Function.html#Function.Bijective)
|
||||
"
|
||||
|
||||
DefinitionDoc LeftInverse as "LeftInverse"
|
||||
"
|
||||
|
||||
## Eigenschaften
|
||||
|
||||
* Mathlib Doc: [#LeftInverse](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Function.html#Function.LeftInverse)
|
||||
"
|
||||
|
||||
DefinitionDoc RightInverse as "RightInverse"
|
||||
"
|
||||
|
||||
## Eigenschaften
|
||||
|
||||
* Mathlib Doc: [#RightInverse](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Logic.html#RightInverse)
|
||||
"
|
||||
|
||||
DefinitionDoc StrictMono as "StrictMono"
|
||||
"
|
||||
`StrictMono f` ist definiert als
|
||||
|
||||
```
|
||||
∀ a b, a < b → f a < f b
|
||||
```
|
||||
|
||||
## Eigenschaften
|
||||
|
||||
* Mathlib Doc: [#StrictMono](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Order/Monotone/Basic.html#StrictMono)
|
||||
|
||||
"
|
||||
|
||||
DefinitionDoc Symbol.Subset as "⊆" "
|
||||
|
||||
Auf Mengen (`Set`) ist `A ⊆ B` als `∀x, x ∈ A → x ∈ B` implementiert.
|
||||
"
|
||||
|
||||
DefinitionDoc Set.Nonempty as "Nonempty" "
|
||||
|
||||
`A.Nonemty` ist als `∃ x, x ∈ A` definiert.
|
||||
"
|
Loading…
Reference in New Issue