You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/testgame/TestGame/LemmaDocs.lean

107 lines
2.0 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import GameServer.Commands
-- Wird im Level "Implication 11" ohne Beweis angenommen.
LemmaDoc not_not as not_not in "Logic"
"
### Aussage
`¬¬A ↔ A`
### Annahmen
`(A : Prop)`
"
-- Wird im Level "Implication 10" ohne Beweis angenommen.
LemmaDoc not_or_of_imp as not_or_of_imp in "Logic"
"
### Aussage
`¬A B`
### Annahmen
`(A B : Prop)`\\
`(h : A → B)`
"
-- Wird im Level "Implication 12" bewiesen.
LemmaDoc imp_iff_not_or as imp_iff_not_or in "Logic"
"
### Aussage
`(A → B) ↔ ¬A B`
### Annahmen
`(A B : Prop)`
"
LemmaDoc zero_add as zero_add in "Addition"
"This lemma says `∀ a : , 0 + a = a`."
LemmaDoc add_zero as add_zero in "Addition"
"This lemma says `∀ a : , a + 0 = a`."
LemmaDoc add_succ as add_succ in "Addition"
"This lemma says `∀ a b : , a + succ b = succ (a + b)`."
LemmaSet addition : "Addition lemmas" :=
zero_add add_zero
LemmaDoc not_forall as not_forall in "Logic"
"`∀ (A : Prop), ¬(∀ x, A) ↔ ∃x, (¬A)`."
LemmaDoc not_exists as not_exists in "Logic"
"`∀ (A : Prop), ¬(∃ x, A) ↔ ∀x, (¬A)`."
LemmaDoc Even as Even in "Nat"
"
`even n` ist definiert als `∃ r, a = 2 * r`.
Die Definition kann man mit `unfold even at *` einsetzen.
"
LemmaDoc Odd as Odd in "Nat"
"
`odd n` ist definiert als `∃ r, a = 2 * r + 1`.
Die Definition kann man mit `unfold odd at *` einsetzen.
"
LemmaDoc not_odd as not_odd in "Nat"
"`¬ (odd n) ↔ even n`"
LemmaDoc not_even as not_even in "Nat"
"`¬ (even n) ↔ odd n`"
LemmaDoc even_square as even_square in "Nat"
"`∀ (n : ), even n → even (n ^ 2)`"
LemmaDoc mem_univ as mem_univ in "Set"
"x ∈ @univ α"
LemmaDoc not_mem_empty as not_mem_empty in "Set"
""
LemmaDoc empty_subset as empty_subset in "Set"
""
LemmaDoc Subset.antisymm_iff as Subset.antisymm_iff in "Set"
""
LemmaDoc Nat.prime_def_lt'' as Nat.prime_def_lt'' in "Nat"
""
LemmaSet natural : "Natürliche Zahlen" :=
Even Odd not_odd not_even
LemmaSet logic : "Logik" :=
not_not not_forall not_exists