- Sia $I$ ideale di $\mathbb{K}[x_1...x_n]$ e consideriamo l’insieme degli ideali $Lm(I)$ al variare degli ordinamenti monomiali. Tale insieme è finito?
- Ideali monomiali: definizione, un polinomio gli appartiene se e solo se ogni suo termine gli appartiene, tappe per mostrare che ogni ideale monomiale è finitamente generato (senza dimostrazione)
- $S = \{ p \in \mathbb{K}[x,y]/(x^2) :~p = a(y)+b(y)x,~a(y) \neq 0\}$ è un insieme moltiplicativo? È il complementare di un ideale primo? Studia $S^{-1}A$, con $A=\mathbb{K}[x,y]/(x^2)$
- Dati $A=\mathbb{C}[x,y,z]$ ed $I=(x^2+y^2+z^2-1,xy,z^4)$, dire più proprietà interessanti possibili di $A/I$, anche passando per la varietà associata ad $I$. Trovare il radicale di $I$, parlare di dimensione di $A/I$ e di $A/\sqrt{I}$, di come sarà la base di Grobner associata, poi un accenno alla decomposizione primaria. $A/I$ è noetheriano o artiniano?
- Omomorfismo canonico $\sigma_S : A->S^{-1}A$, quando è iniettivo, quando è nullo, quando è surgettivo; quando $f:A\to B$ si estende a un isomorfismo $S^{-1}A\to B$.
- Dati $A=\mathbb{Z}/(60)$ e $\mathfrak{p}=(5)$, descrivere $A_\mathfrak{p}$. Se $A$ è finito, mostrare che $\sigma_S$ è surgettivo.
- Chiarimento su esercizio 2.1 del compito, in particolare studiare $(\mathbb{Z}/(q^n))_{(p)}$, con p,q primi.
- Elencare tutte le proprietà di $\mathbb{Z}/(p^n)$ come anello e come modulo, con p primo; dimostrare in modo diretto che non è piatto.
- Data l'immersione di $\mathbb{K}[x_1,x_3,x_5]$ in $\mathbb{K}[x_1,x_2,...,x_6]$, studiare gli ideali estesi e contratti, come calcolarli, quali proprietà si conservano.