|
|
|
# External deps
|
|
|
|
using LinearAlgebra
|
|
|
|
using TypedPolynomials
|
|
|
|
using Distributed, SlurmClusterManager
|
|
|
|
addprocs(SlurmManager())
|
|
|
|
println("Number of processes: ", nworkers())
|
|
|
|
|
|
|
|
# Local deps
|
|
|
|
include("random-poly.jl")
|
|
|
|
include("plot.jl")
|
|
|
|
using .RandomPoly
|
|
|
|
using .Plot
|
|
|
|
@everywhere begin
|
|
|
|
include("start-system.jl")
|
|
|
|
include("homotopy.jl")
|
|
|
|
include("euler-newton.jl")
|
|
|
|
include("adapt-step.jl")
|
|
|
|
end
|
|
|
|
# Macros defined in an @everywhere block aren't available inside it
|
|
|
|
@everywhere begin
|
|
|
|
using .StartSystem
|
|
|
|
using .Homotopy
|
|
|
|
using .EulerNewton
|
|
|
|
using .AdaptStep
|
|
|
|
end
|
|
|
|
|
|
|
|
@everywhere function compute_root(H, r, maxsteps=1000)
|
|
|
|
t = 1.0
|
|
|
|
step_size = 0.01
|
|
|
|
x0 = r
|
|
|
|
m = 0
|
|
|
|
steps = 0
|
|
|
|
|
|
|
|
while t > 0 && steps < maxsteps
|
|
|
|
x0 = en_step(H, x0, t, step_size)
|
|
|
|
(m, step_size) = adapt_step(H, x0, t, step_size, m)
|
|
|
|
t -= step_size
|
|
|
|
steps += 1
|
|
|
|
end
|
|
|
|
return (x0, steps)
|
|
|
|
end
|
|
|
|
|
|
|
|
# Main homotopy continuation loop
|
|
|
|
function solve(F, G, roots)
|
|
|
|
H = homotopy(F, G)
|
|
|
|
|
|
|
|
result = Array{Future}(undef, length(roots))
|
|
|
|
for i in eachindex(roots)
|
|
|
|
result[i] = @spawn compute_root(H, roots[i])
|
|
|
|
end
|
|
|
|
|
|
|
|
sols = Array{ComplexF64,2}(undef, length(roots), length(F))
|
|
|
|
steps = Array{Int64}(undef, length(roots))
|
|
|
|
for i in eachindex(roots)
|
|
|
|
(solution, step_array) = fetch(result[i])
|
|
|
|
sols[i, :] = solution
|
|
|
|
steps[i] = step_array
|
|
|
|
end
|
|
|
|
|
|
|
|
return (sols, steps)
|
|
|
|
end
|
|
|
|
|
|
|
|
# @polyvar x y
|
|
|
|
# C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
|
|
|
|
# Q = [x^2 + 2y, y - 3x^3]
|
|
|
|
# F = [x*y - 1, x^2 + y^2 - 4]
|
|
|
|
# T = [x*y - 1, x^2 + y^2 - 2]
|
|
|
|
|
|
|
|
R = random_system(3, 5)
|
|
|
|
println("System: ", R)
|
|
|
|
(G, roots)=start_system(R)
|
|
|
|
println("Number of roots: ", length(roots))
|
|
|
|
|
|
|
|
# Parallel execution
|
|
|
|
println("PARALLEL")
|
|
|
|
@time begin
|
|
|
|
(sol, steps) = solve(R, G, roots)
|
|
|
|
end
|
|
|
|
println("Number of steps: ", steps)
|
|
|
|
# converting sR to array of arrays instead of a matrix
|
|
|
|
sol = [sol[i, :] for i in 1:length(sol[:, 1])]
|
|
|
|
sol = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sol)
|
|
|
|
sol = map(u -> real.(u), sol)
|
|
|
|
vars = variables(R)
|
|
|
|
println("Solutions: ", sol)
|
|
|
|
println("Norms (lower = better): ", [norm([f(vars => s) for f in R]) for s in sol])
|
|
|
|
|
|
|
|
# Single execution
|
|
|
|
println("SINGLE")
|
|
|
|
rmprocs(workers())
|
|
|
|
@time begin
|
|
|
|
(sol, steps) = solve(R, G, roots)
|
|
|
|
end
|
|
|
|
println("Number of steps: ", steps)
|
|
|
|
# converting sR to array of arrays instead of a matrix
|
|
|
|
sol = [sol[i, :] for i in 1:length(sol[:, 1])]
|
|
|
|
sol = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sol)
|
|
|
|
sol = map(u -> real.(u), sol)
|
|
|
|
vars = variables(R)
|
|
|
|
println("Solutions: ", sol)
|
|
|
|
println("Norms (lower = better): ", [norm([f(vars => s) for f in R]) for s in sol])
|
|
|
|
|
|
|
|
# Plotting the system and the real solutions
|
|
|
|
# ENV["GKSwstype"] = "nul"
|
|
|
|
# plot_real(sC, C, 6, 12, "1")
|
|
|
|
# plot_real(sQ, Q, 2, 2, "2")
|
|
|
|
# plot_real(sF, F, 4, 4, "3")
|
|
|
|
# plot_real(sT, T, 4, 4, "4")
|
|
|
|
# plot_real(sol, R, 5, 5, "random")
|