|
|
|
\section{User Interface\label{sec:userinterface}}
|
|
|
|
\markboth{\textsc{MLD2P4 User's and Reference Guide}}
|
|
|
|
{\textsc{\ref{sec:userinterface} User Interface}}
|
|
|
|
|
|
|
|
|
|
|
|
The basic user interface of MLD2P4 consists of six routines. The four routines \verb|mld_| \verb|precinit|,
|
|
|
|
\verb|mld_precset|, \verb|mld_precbld| and \verb|mld_precaply| encapsulate all the functionalities
|
|
|
|
for the setup and the application of any one-level and multi-level
|
|
|
|
preconditioner implemented in the package.
|
|
|
|
The routine \verb|mld_precfree| deallocates the preconditioner data structure, while
|
|
|
|
\verb|mld_precdescr| prints a description of the preconditioner setup by the user.
|
|
|
|
|
|
|
|
For each routine, the same user interface is overloaded with
|
|
|
|
respect to the real/complex case and the single/double precision;
|
|
|
|
arguments with appropriate data types must be passed to the routine,
|
|
|
|
i.e.
|
|
|
|
\begin{itemize}
|
|
|
|
\item the sparse matrix data structure, containing the matrix to be
|
|
|
|
preconditioned, must be of type \verb|psb_|\emph{x}\verb|spmat_type|
|
|
|
|
with \emph{x} = \verb|s| for real single precision, \emph{x} = \verb|d|
|
|
|
|
for real double precision, \emph{x} = \verb|c| for complex single precision,
|
|
|
|
\emph{x} = \verb|z| for complex double precision;
|
|
|
|
\item the preconditioner data structure must be of type
|
|
|
|
\verb|mld_|\emph{x}\verb|prec_type|, with \emph{x} =
|
|
|
|
\verb|s|, \verb|d|, \verb|c|, \verb|z|, according to the sparse
|
|
|
|
matrix data structure;
|
|
|
|
\item the arrays containing the vectors $v$ and $w$ involved in
|
|
|
|
the preconditioner application $w=M^{-1}v$ must be of type
|
|
|
|
\verb|psb_|\emph{x}\verb|vect_type| with \emph{x} =
|
|
|
|
\verb|s|, \verb|d|, \verb|c|, \verb|z|, in a manner completely
|
|
|
|
analogous to the sparse matrix type;
|
|
|
|
\item real parameters defining the preconditioner must be declared
|
|
|
|
according to the precision of the sparse matrix and preconditioner
|
|
|
|
data structures (see Section~\ref{sec:precset}).
|
|
|
|
\end{itemize}
|
|
|
|
A description of each routine is given in the remainder of this section.
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine mld\_precinit\label{sec:precinit}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|mld_precinit(p,ptype,info)| \\
|
|
|
|
\verb|mld_precinit(p,ptype,info,nlev)| \\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine allocates and initializes the preconditioner data structure,
|
|
|
|
according to the preconditioner type chosen by the user.
|
|
|
|
|
|
|
|
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
& The preconditioner data structure. Note that \emph{x}
|
|
|
|
must be chosen according to the real/complex, single/double
|
|
|
|
precision version of MLD2P4 under use.\\
|
|
|
|
\verb|ptype| & \verb|character(len=*), intent(in)|.\\
|
|
|
|
& The type of preconditioner. Its values are specified
|
|
|
|
in Table~\ref{tab:precinit}.\\
|
|
|
|
& Note that the strings are case insensitive.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\verb|nlev| & \verb|integer, optional, intent(in)|.\\
|
|
|
|
& The number of levels of the multilevel preconditioner.
|
|
|
|
If \verb|nlev| is not present and \verb|ptype|=\verb|'ML'|, \verb|'ml'|,
|
|
|
|
then \verb|nlev|=2 is assumed. Otherwise, \verb|nlev| is ignored.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine mld\_precset\label{sec:precset}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|mld_precset(p,what,val,info)|\\
|
|
|
|
\verb|mld_precset(p,smoother,info)|\\
|
|
|
|
\verb|mld_precset(p,solver,info)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine sets the parameters defining the preconditioner. More
|
|
|
|
precisely, the parameter identified by \verb|what| is assigned the value
|
|
|
|
contained in \verb|val|. The other two forms of this routine are
|
|
|
|
designed to allow extensions of the library by passing new smoothers
|
|
|
|
and solvers to be employed in the preconditioner.
|
|
|
|
|
|
|
|
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
& The preconditioner data structure. Note that \emph{x} must
|
|
|
|
be chosen according to the real/complex, single/double precision
|
|
|
|
version of MLD2P4 under use.\\
|
|
|
|
\verb|what| & \verb|integer, intent(in)|. \\
|
|
|
|
& The number identifying the parameter to be set.
|
|
|
|
A mnemonic constant has been associated to each of these
|
|
|
|
numbers, as reported in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}.\\
|
|
|
|
\verb|val | & \verb|integer| \emph{or} \verb|character(len=*)| \emph{or}
|
|
|
|
\verb|real(psb_spk_)| \emph{or} \verb|real(psb_dpk_)|,
|
|
|
|
\verb|intent(in)|.\\
|
|
|
|
& The value of the parameter to be set. The list of allowed
|
|
|
|
values and the corresponding data types is given in
|
|
|
|
Tables~\ref{tab:p_type}-\ref{tab:p_coarse}.
|
|
|
|
When the value is of type \verb|character(len=*)|,
|
|
|
|
it is also treated as case insensitive.\\
|
|
|
|
\verb|smoother| & \verb|class(mld_x_base_smoother_type)| \\
|
|
|
|
& The user-defined new smoother to be employed in the
|
|
|
|
preconditioner.\\
|
|
|
|
|
|
|
|
\verb|solver| & \verb|class(mld_x_base_solver_type)| \\
|
|
|
|
& The user-defined new solver to be employed in the
|
|
|
|
preconditioner.\\
|
|
|
|
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors}
|
|
|
|
for details.\\
|
|
|
|
%
|
|
|
|
%\verb|ilev| & \verb|integer, optional, intent(in)|.\\
|
|
|
|
% & For the multilevel preconditioner, the level at which the
|
|
|
|
% preconditioner parameter has to be set.
|
|
|
|
% The levels are numbered in increasing
|
|
|
|
% order starting from the finest one, i.e.\ level 1 is the finest level.
|
|
|
|
% If \verb|ilev| is not present, the parameter identified by \verb|what|
|
|
|
|
% is set at all the appropriate levels (see Table~\ref{tab:params}).
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\ \\
|
|
|
|
A variety of (one-level and multi-level) preconditioners can be obtained
|
|
|
|
by a suitable setting of the preconditioner parameters. These parameters
|
|
|
|
can be logically divided into four groups, i.e.\ parameters defining
|
|
|
|
\begin{enumerate}
|
|
|
|
\item the type of multi-level preconditioner;
|
|
|
|
\item the one-level preconditioner used as smoother;
|
|
|
|
\item the aggregation algorithm;
|
|
|
|
\item the coarse-space correction at the coarsest level.
|
|
|
|
\end{enumerate}
|
|
|
|
A list of the parameters that can be set, along with their allowed and
|
|
|
|
default values, is given in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}.
|
|
|
|
For a detailed description of the meaning of the parameters, please
|
|
|
|
refer to Section~\ref{sec:background}.
|
|
|
|
%
|
|
|
|
The smoother and solver objects are arranged in a hierarchical manner;
|
|
|
|
when specifying a new smoother object, its parameters including the
|
|
|
|
contained solver are set to default values, and when a new solver
|
|
|
|
object is specified its defaults are also set, overriding in both
|
|
|
|
cases any previous settings even if explicitly specified. Therefore if
|
|
|
|
the user specifies a new smoother, and whishes to use a new solver
|
|
|
|
which is not the default one, the call to set the solver must come
|
|
|
|
\emph{after} the call to set the smoother.
|
|
|
|
%
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{|l|l|p{2cm}|l|p{7cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{type of the multi-level preconditioner}}\\ \hline
|
|
|
|
\verb|mld_ml_type_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'ADD'} \ \ \ \texttt{'MULT'}
|
|
|
|
& \texttt{'MULT'}
|
|
|
|
& Basic multi-level framework: additive or multiplicative
|
|
|
|
among the levels (always additive inside a level). \\ \hline
|
|
|
|
\verb|mld_smoother_type_|& \verb|character(len=*)|
|
|
|
|
& \texttt{'DIAG'} \ \ \ \texttt{'BJAC'} \ \ \ \texttt{'AS'}
|
|
|
|
& \texttt{'AS'}
|
|
|
|
& Basic predefined one-level preconditioner (i.e.\ smoother): diagonal,
|
|
|
|
block Jacobi, AS. \\ \hline
|
|
|
|
\verb|mld_smoother_pos_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'PRE'} \ \ \ \texttt{'POST'} \ \ \ \texttt{'TWOSIDE'}
|
|
|
|
& \texttt{'POST'}
|
|
|
|
& ``Position'' of the smoother: pre-smoother, post-smoother,
|
|
|
|
pre- and post-smoother. \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the type of multi-level preconditioner.
|
|
|
|
\label{tab:p_type}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{|l|l|p{3.2cm}|l|p{7cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{basic one-level preconditioner (smoother)}} \\ \hline
|
|
|
|
\verb|mld_sub_ovr_| & \verb|integer|
|
|
|
|
& any~int.~num.~$\ge 0$
|
|
|
|
& 1
|
|
|
|
& Number of overlap layers. \\ \hline
|
|
|
|
\verb|mld_sub_restr_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'HALO'} \hspace{2.5cm} \texttt{'NONE'}
|
|
|
|
& \texttt{'HALO'}
|
|
|
|
& Type of restriction operator:
|
|
|
|
\texttt{'HALO'} for taking into account the overlap, \texttt{'NONE'}
|
|
|
|
for neglecting it. \\ \hline
|
|
|
|
\verb|mld_sub_prol_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'SUM'} \hspace{2.5cm} \texttt{'NONE'}
|
|
|
|
& \texttt{'NONE'}
|
|
|
|
& Type of prolongation operator:
|
|
|
|
\texttt{'SUM'} for adding the contributions from the overlap, \texttt{'NONE'}
|
|
|
|
for neglecting them. \\ \hline
|
|
|
|
\verb|mld_sub_solve_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'ILU'} \hspace{2.5cm} \texttt{'MILU'} \hspace{2.5cm} \texttt{'ILUT'}
|
|
|
|
\hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm} \texttt{'SLU'}
|
|
|
|
& \texttt{'ILU'}
|
|
|
|
& Predefined local solver: ILU($p$),
|
|
|
|
MILU($p$), ILU($p,t$), LU from UMFPACK, LU from SuperLU
|
|
|
|
(plus triangular solve). \\ \hline
|
|
|
|
\verb|mld_sub_fillin_| & \verb|integer|
|
|
|
|
& Any~int.~num.~$\ge 0$
|
|
|
|
& 0
|
|
|
|
& Fill-in level $p$ of the incomplete LU factorizations. \\ \hline
|
|
|
|
\verb|mld_sub_iluthrs_| & \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
& Any~real~num.~$\ge 0$
|
|
|
|
& 0
|
|
|
|
& Drop tolerance $t$ in the ILU($p,t$) factorization. \\ \hline
|
|
|
|
\verb|mld_sub_ren_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'RENUM\_NONE'} \texttt{'RENUM\_GLOBAL'} %, \texttt{'RENUM_GPS'}
|
|
|
|
& \texttt{'RENUM\_NONE'}
|
|
|
|
& Row and column reordering of the local submatrices: no reordering,
|
|
|
|
reordering according to the global numbering of the rows and columns of
|
|
|
|
the whole matrix. \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the one-level preconditioner used as smoother.
|
|
|
|
\label{tab:p_smoother}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{|l|l|p{2.4cm}|p{2.4cm}|p{7cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{aggregation algorithm}} \\ \hline
|
|
|
|
\verb|mld_coarse_aggr_size_|& \verb|integer|
|
|
|
|
& A positive number
|
|
|
|
& 0, meaning that the size is fixed at
|
|
|
|
\verb|precinit| time
|
|
|
|
& Coarse size threshold. Disregard the
|
|
|
|
original specification of number of levels in
|
|
|
|
\verb|precinit| and continue aggregation
|
|
|
|
until either the global number of variables
|
|
|
|
is below this threshold, or the aggregation
|
|
|
|
does not reduce the size any longer. \\ \hline
|
|
|
|
\verb|mld_aggr_alg_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'DEC'}
|
|
|
|
& \texttt{'DEC'}
|
|
|
|
& Aggregation algorithm. Currently, only the
|
|
|
|
decoupled aggregation is available. \\ \hline
|
|
|
|
\verb|mld_aggr_kind_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'SMOOTHED'} \hspace{2.5cm} \texttt{'NONSMOOTHED'}
|
|
|
|
& \texttt{'SMOOTHED'}
|
|
|
|
& Type of aggregation: smoothed, nonsmoothed
|
|
|
|
(i.e.\ using the tentative prolongator). \\ \hline
|
|
|
|
\verb|mld_aggr_thresh_| & \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
& Any~real~num. $\in [0, 1]$
|
|
|
|
& 0
|
|
|
|
& Threshold $\theta$ in the aggregation algorithm. \\ \hline
|
|
|
|
\verb|mld_aggr_omega_alg_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'EIG\_EST'} \hspace{2.5cm} \texttt{'USER\_CHOICE'}
|
|
|
|
& \texttt{'EIG\_EST'}
|
|
|
|
& How the damping parameter $\omega$ in the
|
|
|
|
smoothed aggregation should be computed:
|
|
|
|
either via an estimate of the spectral radius of
|
|
|
|
$D^{-1}A$, or explicily
|
|
|
|
specified by the user. \\ \hline
|
|
|
|
\verb|mld_aggr_eig_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'A\_NORMI'}
|
|
|
|
& \texttt{'A\_NORMI'}
|
|
|
|
& How to estimate the spectral radius of $D^{-1}A$.
|
|
|
|
Currently only the infinity norm estimate
|
|
|
|
is available. \\ \hline
|
|
|
|
\verb|mld_aggr_omega_val_| & \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
& Any~nonnegative~real~num.
|
|
|
|
& $4/(3\rho(D^{-1}A))$
|
|
|
|
& Damping parameter $\omega$ in the smoothed aggregation algorithm.
|
|
|
|
It must be set by the user if
|
|
|
|
\verb|USER_CHOICE| was specified for
|
|
|
|
\verb|mld_aggr_omega_alg_|,
|
|
|
|
otherwise it is computed by the library, using the
|
|
|
|
selected estimate of the spectral radius $\rho(D^{-1}A)$ of
|
|
|
|
$D^{-1}A$.\\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the aggregation algorithm.
|
|
|
|
\label{tab:p_aggregation}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{|l|l|p{3.2cm}|l|p{7cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{coarse-space correction at the coarsest level}}\\ \hline
|
|
|
|
\verb|mld_coarse_mat_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'DISTR'} \hspace{2.5cm} \texttt{'REPL'}
|
|
|
|
& \texttt{'DISTR'}
|
|
|
|
& Coarsest matrix: distributed among the processors or
|
|
|
|
replicated on each of them. \\ \hline
|
|
|
|
\verb|mld_coarse_solve_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'BJAC'} \hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm}
|
|
|
|
\texttt{'SLU'} \hspace{2.5cm} \texttt{'SLUDIST'}
|
|
|
|
& \texttt{'BJAC'}
|
|
|
|
& Solver used at the coarsest level: block Jacobi, sequential
|
|
|
|
LU from UMFPACK, sequential LU from SuperLU,
|
|
|
|
distributed LU from SuperLU\_Dist.
|
|
|
|
\texttt{'SLUDIST'} requires the coarsest
|
|
|
|
matrix to be distributed, while \texttt{'UMF'} and
|
|
|
|
\texttt{'SLU'} require it to be replicated. \\ \hline
|
|
|
|
\verb|mld_coarse_subsolve_| & \verb|character(len=*)|
|
|
|
|
& \texttt{'ILU'} \hspace{2.5cm} \texttt{'MILU'}
|
|
|
|
\hspace{2.5cm} \texttt{'ILUT'}
|
|
|
|
\hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm} \texttt{'SLU'}
|
|
|
|
& See note
|
|
|
|
& Solver for the diagonal blocks of the coarse matrix,
|
|
|
|
in case the block Jacobi solver
|
|
|
|
is chosen as coarsest-level solver: ILU($p$), MILU($p$),
|
|
|
|
ILU($p,t$), LU from UMFPACK,
|
|
|
|
LU from SuperLU, plus triangular solve. \\ \hline
|
|
|
|
\verb|mld_coarse_sweeps_|& \verb|integer|
|
|
|
|
& Any~int.~num.~$> 0$
|
|
|
|
& 4
|
|
|
|
& Number of Block-Jacobi sweeps when 'BJAC' is used as
|
|
|
|
coarsest-level solver. \\ \hline
|
|
|
|
\verb|mld_coarse_fillin_| & \verb|integer|
|
|
|
|
& Any~int.~num.~$\ge 0$
|
|
|
|
& 0
|
|
|
|
& Fill-in level $p$ of the incomplete LU factorizations. \\ \hline
|
|
|
|
\verb|mld_coarse_iluthrs_| & \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
& Any~real.~num.~$\ge 0$
|
|
|
|
& 0
|
|
|
|
& Drop tolerance $t$ in the ILU($p,t$) factorization. \\
|
|
|
|
\hline
|
|
|
|
\multicolumn{5}{|l|}{{\bfseries Note:} defaults for
|
|
|
|
{\texttt mld\_coarse\_subsolve\_} are chosen as }\\
|
|
|
|
\multicolumn{5}{|l|}{single precision version: 'SLU' if installed, 'ILU' otherwise}\\
|
|
|
|
\multicolumn{5}{|l|}{double precision version: 'UMF' if installed,
|
|
|
|
else 'SLU' if installed, 'ILU' otherwise}\\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the coarse-space correction at the coarsest
|
|
|
|
level.\label{tab:p_coarse}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
% \par\noindent{\large\bfseries Note}\par\noindent
|
|
|
|
% The defaults for parameter \verb|mld_coarse_subsolve_| in Table~\ref{tab:p_coarse} are determined
|
|
|
|
% as follows:
|
|
|
|
% \begin{description}
|
|
|
|
% \item[Single precision data:] 'SLU' if installed, 'ILU' otherwise;
|
|
|
|
% \item[Double precision data:] 'UMF' if installed, else 'SLU' if
|
|
|
|
% installed, 'ILU' otherwise;
|
|
|
|
% \end{description}
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine mld\_precbld\label{sec:precbld}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|mld_precbld(a,desc_a,p,info)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine builds the preconditioner according to the requirements made by
|
|
|
|
the user through the routines \verb|mld_precinit| and \verb|mld_precset|.
|
|
|
|
|
|
|
|
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
\verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\
|
|
|
|
& The sparse matrix structure containing the local part of the
|
|
|
|
matrix to be preconditioned. Note that \emph{x} must be chosen according
|
|
|
|
to the real/complex,
|
|
|
|
single/double precision version of MLD2P4 under use.
|
|
|
|
See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\
|
|
|
|
\verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\
|
|
|
|
& The communication descriptor of \verb|a|. See the PSBLAS User's Guide for
|
|
|
|
details \cite{PSBLASGUIDE}.\\
|
|
|
|
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
& The preconditioner data structure. Note that \emph{x} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
\subsection{Subroutine mld\_precaply\label{sec:precaply}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|mld_precaply(p,x,y,desc_a,info)|\\
|
|
|
|
\verb|mld_precaply(p,x,y,desc_a,info,trans,work)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine computes $y = op(M^{-1})\, x$, where $M$ is a previously built
|
|
|
|
preconditioner, stored into \verb|p|, and $op$
|
|
|
|
denotes the preconditioner itself or its transpose, according to
|
|
|
|
the value of \verb|trans|.
|
|
|
|
Note that, when MLD2P4 is used with a Krylov solver from PSBLAS,
|
|
|
|
\verb|mld_precaply| is called within the PSBLAS routine \verb|psb_krylov|
|
|
|
|
and hence it is completely transparent to the user.
|
|
|
|
|
|
|
|
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
& The preconditioner data structure, containing the local part of $M$.
|
|
|
|
Note that \emph{x} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|x| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(in)|.\\
|
|
|
|
& The local part of the vector $x$. Note that \emph{type} and
|
|
|
|
\emph{kind\_parameter} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|y| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(out)|.\\
|
|
|
|
& The local part of the vector $y$. Note that \emph{type} and
|
|
|
|
\emph{kind\_parameter} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\
|
|
|
|
& The communication descriptor associated to the matrix to be
|
|
|
|
preconditioned.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\verb|trans| & \verb|character(len=1), optional, intent(in).|\\
|
|
|
|
& If \verb|trans| = \verb|'N','n'| then $op(M^{-1}) = M^{-1}$;
|
|
|
|
if \verb|trans| = \verb|'T','t'| then $op(M^{-1}) = M^{-T}$
|
|
|
|
(transpose of $M^{-1})$; if \verb|trans| = \verb|'C','c'| then $op(M^{-1}) = M^{-C}$
|
|
|
|
(conjugate transpose of $M^{-1})$.\\
|
|
|
|
\verb|work| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), optional, target|.\\
|
|
|
|
& Workspace. Its size should be at
|
|
|
|
least \verb|4 * psb_cd_get_local_| \verb|cols(desc_a)| (see the PSBLAS User's Guide).
|
|
|
|
Note that \emph{type} and \emph{kind\_parameter} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine mld\_precfree\label{sec:precfree}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|mld_precfree(p,info)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine deallocates the preconditioner data structure.
|
|
|
|
|
|
|
|
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{10.5cm}}
|
|
|
|
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
& The preconditioner data structure. Note that \emph{x} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine mld\_precdescr\label{sec:precdescr}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|mld_precdescr(p,info)|\\
|
|
|
|
\verb|mld_precdescr(p,info,iout)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine prints a description of the preconditioner to the standard output or
|
|
|
|
to a file. It must be called after \verb|mld_precbld| has been called.
|
|
|
|
|
|
|
|
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(in)|.\\
|
|
|
|
& The preconditioner data structure. Note that \emph{x} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\verb|iout| & \verb|integer, intent(in), optional|.\\
|
|
|
|
& The id of the file where the preconditioner description
|
|
|
|
will be printed; the default is the standard output.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
%%% Local Variables:
|
|
|
|
%%% mode: latex
|
|
|
|
%%% TeX-master: "userguide"
|
|
|
|
%%% End:
|