|
|
|
\section{User Interface\label{sec:userinterface}}
|
|
|
|
\markboth{\textsc{MLD2P4 User's and Reference Guide}}
|
|
|
|
{\textsc{\ref{sec:userinterface} User Interface}}
|
|
|
|
|
|
|
|
The basic user interface of MLD2P4 consists of eight routines. The six
|
|
|
|
routines \verb|init|, \verb|set|,
|
|
|
|
\verb|hierarchy_build|, \verb|smoothers_build|,
|
|
|
|
\verb|bld|, and \verb|apply| encapsulate all the
|
|
|
|
functionalities for the setup and the application of any multilevel and one-level
|
|
|
|
preconditioner implemented in the package.
|
|
|
|
The routine \verb|free| deallocates the preconditioner data structure, while
|
|
|
|
\verb|descr| prints a description of the preconditioner setup by the user.
|
|
|
|
|
|
|
|
All the routines are available as methods of the preconditioner object.
|
|
|
|
For each routine, the same user interface is overloaded with
|
|
|
|
respect to the real/ complex case and the single/double precision;
|
|
|
|
arguments with appropriate data types must be passed to the routine,
|
|
|
|
i.e.,
|
|
|
|
\begin{itemize}
|
|
|
|
\item the sparse matrix data structure, containing the matrix to be
|
|
|
|
preconditioned, must be of type \verb|psb_|\emph{x}\verb|spmat_type|
|
|
|
|
with \emph{x} = \verb|s| for real single precision, \emph{x} = \verb|d|
|
|
|
|
for real double precision, \emph{x} = \verb|c| for complex single precision,
|
|
|
|
\emph{x} = \verb|z| for complex double precision;
|
|
|
|
\item the preconditioner data structure must be of type
|
|
|
|
\verb|mld_|\emph{x}\verb|prec_type|, with \emph{x} =
|
|
|
|
\verb|s|, \verb|d|, \verb|c|, \verb|z|, according to the sparse
|
|
|
|
matrix data structure;
|
|
|
|
\item the arrays containing the vectors $v$ and $w$ involved in
|
|
|
|
the preconditioner application $w=B^{-1}v$ must be of type
|
|
|
|
\verb|psb_|\emph{x}\verb|vect_type| with \emph{x} =
|
|
|
|
\verb|s|, \verb|d|, \verb|c|, \verb|z|, in a manner completely
|
|
|
|
analogous to the sparse matrix type;
|
|
|
|
\item real parameters defining the preconditioner must be declared
|
|
|
|
according to the precision of the sparse matrix and preconditioner
|
|
|
|
data structures (see Section~\ref{sec:precset}).
|
|
|
|
\end{itemize}
|
|
|
|
A description of each routine is given in the remainder of this section.
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine init\label{sec:precinit}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call p%init(ptype,info)|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine allocates and initializes the preconditioner
|
|
|
|
\verb|p|, according to the preconditioner type chosen by the user.
|
|
|
|
|
|
|
|
{\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
%\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
% & The preconditioner data structure. Note that \emph{x}
|
|
|
|
% must be chosen according to the real/complex, single/double
|
|
|
|
% precision version of MLD2P4 under use.\\
|
|
|
|
\verb|ptype| & \verb|character(len=*), intent(in)|.\\
|
|
|
|
& The type of preconditioner. Its values are specified
|
|
|
|
in Table~\ref{tab:precinit}.\\
|
|
|
|
& Note that the strings are case insensitive.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
%\verb|nlev| & \verb|integer, optional, intent(in)|.\\
|
|
|
|
% & The number of levels of the multilevel
|
|
|
|
% preconditioner. This optional argument is deprecated,
|
|
|
|
% new codes should set the number of levels with \verb|mld_precset|.\\
|
|
|
|
% If \verb|nlev| is not present and \verb|ptype|=\verb|'ML'|, \verb|'ml'|,
|
|
|
|
% then \verb|nlev|=2 is assumed. Otherwise, \verb|nlev| is ignored.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\vskip1.5\baselineskip
|
|
|
|
For compatibility with the previous versions of MLD2P4, this routine can be also invoked
|
|
|
|
as follows:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call mld_precinit(p,ptype,info)|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine set\label{sec:precset}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call p%set(what,val,info [,ilev, ilmax, pos])|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine sets the parameters defining the preconditioner \verb|p|. More
|
|
|
|
precisely, the parameter identified by \verb|what| is assigned the value
|
|
|
|
contained in \verb|val|.
|
|
|
|
|
|
|
|
{\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
%\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
% & The preconditioner data structure. Note that \emph{x} must
|
|
|
|
% be chosen according to the real/complex, single/double precision
|
|
|
|
% version of MLD2P4 under use.\\
|
|
|
|
\verb|what| & \verb|character(len=*)|. \\
|
|
|
|
& The parameter to be set. It can be specified through its name;
|
|
|
|
the string is case-insensitive. See
|
|
|
|
Tables~\ref{tab:p_cycle}-\ref{tab:p_smoother_1}.\\
|
|
|
|
\verb|val | & \verb|integer| \emph{or} \verb|character(len=*)| \emph{or}
|
|
|
|
\verb|real(psb_spk_)| \emph{or} \verb|real(psb_dpk_)|,
|
|
|
|
\verb|intent(in)|.\\
|
|
|
|
& The value of the parameter to be set. The list of allowed
|
|
|
|
values and the corresponding data types is given in
|
|
|
|
Tables~\ref{tab:p_cycle}-\ref{tab:p_smoother_1}.
|
|
|
|
When the value is of type \verb|character(len=*)|,
|
|
|
|
it is also treated as case insensitive.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors}
|
|
|
|
for details.\\
|
|
|
|
\verb|ilev| & \verb|integer, optional, intent(in)|.\\
|
|
|
|
& For the multilevel preconditioner, the level at which the
|
|
|
|
preconditioner parameter has to be set.
|
|
|
|
The levels are numbered in increasing
|
|
|
|
order starting from the finest one, i.e., level 1 is the finest level.
|
|
|
|
If \verb|ilev| is not present, the parameter identified by \verb|what|
|
|
|
|
is set at all the appropriate levels (see
|
|
|
|
Tables~\ref{tab:p_cycle}-\ref{tab:p_smoother_1}).\\
|
|
|
|
\verb|ilmax| & \verb|integer, optional, intent(in)|.\\
|
|
|
|
& For the multilevel preconditioner, when both
|
|
|
|
\verb|ilev| and \verb|ilmax| are present, the settings
|
|
|
|
are applied at all levels \verb|ilev:ilmax|. When
|
|
|
|
\verb|ilev| is present but \verb|ilmax| is not, then
|
|
|
|
the default is \verb|ilmax=ilev|.
|
|
|
|
The levels are numbered in increasing
|
|
|
|
order starting from the finest one, i.e., level 1 is the finest level. \\
|
|
|
|
\verb|pos| & \verb|charater(len=*), optional, intent(in)|.\\
|
|
|
|
& Whether the other arguments apply only to the pre-smoother (\verb|'PRE'|)
|
|
|
|
or to the post-smoother (\verb|'POST'|). If \verb|pos| is not present,
|
|
|
|
the other arguments are applied to both smoothers.
|
|
|
|
If the preconditioner is one-level or the parameter identified by \verb|what|
|
|
|
|
does not concern the smoothers, \verb|pos| is ignored.
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\vskip1.5\baselineskip
|
|
|
|
For compatibility with the previous versions of MLD2P4, this routine can be also invoked
|
|
|
|
as follows:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call mld_precset(p,what,val,info)|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
However, in this case the optional arguments \verb|ilev|, \verb|ilmax|, and \verb|pos|
|
|
|
|
cannot be used. \\
|
|
|
|
|
|
|
|
A variety of preconditioners can be obtained
|
|
|
|
by a suitable setting of the preconditioner parameters. These parameters
|
|
|
|
can be logically divided into four groups, i.e., parameters defining
|
|
|
|
\begin{enumerate}
|
|
|
|
\item the type of multilevel cycle and how many cycles must be applied;
|
|
|
|
\item the aggregation algorithm;
|
|
|
|
\item the coarse-space correction at the coarsest level (for multilevel
|
|
|
|
preconditioners only);
|
|
|
|
\item the smoother of the multilevel preconditioners, or the one-level
|
|
|
|
preconditioner.
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
A list of the parameters that can be set, along with their allowed and
|
|
|
|
default values, is given in Tables~\ref{tab:p_cycle}-\ref{tab:p_smoother_1}.
|
|
|
|
For a description of the meaning of the parameters, please
|
|
|
|
refer also to Section~\ref{sec:background}. \\
|
|
|
|
|
|
|
|
\textbf{Remark 2.} A smoother is usually obtained by combining two objects:
|
|
|
|
a smoother (\verb|SMOOTHER_TYPE|) and a local solver (\verb|SUB_SOLVE|),
|
|
|
|
as specified in Tables~\ref{tab:p_smoother}-\ref{tab:p_smoother_1}.
|
|
|
|
For example, the block-Jacobi smoother using
|
|
|
|
ILU(0) on the blocks is obtained by combining the block-Jacobi smoother
|
|
|
|
object with the ILU(0) solver object. Similarly,
|
|
|
|
the hybrid Gauss-Seidel smoother (see Note in Table~\ref{tab:p_smoother})
|
|
|
|
is obtained by combining the block-Jacobi smoother object with a single sweep
|
|
|
|
of the Gauss-Seidel solver object, while the point-Jacobi smoother is the
|
|
|
|
result of combining the block-Jacobi smoother object with a single sweep
|
|
|
|
of the pointwise-Jacobi solver object. However, for simplicity, shortcuts are
|
|
|
|
provided to set point-Jacobi, hybrid (forward) Gauss-Seidel, and
|
|
|
|
hybrid backward Gauss-Seidel, i.e., the previous smoothers can be defined
|
|
|
|
by setting only \verb|SMOOTHER_TYPE| to appropriate values (see
|
|
|
|
Tables~\ref{tab:p_smoother}), i.e., without setting
|
|
|
|
\verb|SUB_SOLVE| too.
|
|
|
|
|
|
|
|
The smoother and solver objects are arranged in a
|
|
|
|
hierarchical manner. When specifying a smoother object, its parameters,
|
|
|
|
including the local solver, are set to their default values, and when a solver
|
|
|
|
object is specified, its defaults are also set, overriding in both
|
|
|
|
cases any previous settings even if explicitly specified. Therefore if
|
|
|
|
the user sets a smoother, and wishes to use a solver
|
|
|
|
different from the default one, the call to set the solver must come
|
|
|
|
\emph{after} the call to set the smoother.
|
|
|
|
|
|
|
|
Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi
|
|
|
|
coarsest-level solvers, and shortcuts are available
|
|
|
|
in this case too (see Table~\ref{tab:p_coarse}). \\
|
|
|
|
|
|
|
|
\textbf{Remark 3.} In general, a coarsest-level solver cannot be used with
|
|
|
|
both the replicated and distributed coarsest-matrix layout;
|
|
|
|
therefore, setting the solver after the layout may change the layout.
|
|
|
|
Similarly, setting the layout after the solver may change the solver.
|
|
|
|
|
|
|
|
More precisely, UMFPACK and SuperLU require the coarsest-level
|
|
|
|
matrix to be replicated, while SuperLU\_Dist requires it to be distributed.
|
|
|
|
In these cases, setting the coarsest-level solver implies that
|
|
|
|
the layout is redefined according to the solver, ovverriding any
|
|
|
|
previous settings. MUMPS, point-Jacobi,
|
|
|
|
hybrid Gauss-Seidel and block-Jacobi can be applied to
|
|
|
|
replicated and distributed matrices, thus their choice
|
|
|
|
does not modify any previously specified layout.
|
|
|
|
It is worth noting that, when the matrix is replicated,
|
|
|
|
the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers
|
|
|
|
reduce to the corresponding local solver objects (see Remark~2).
|
|
|
|
For the point-Jacobi and Gauss-Seidel solvers, these objects
|
|
|
|
correspond to a \emph{single} point-Jacobi sweep and a \emph{single}
|
|
|
|
Gauss-Seidel sweep, respectively, which are very poor solvers.
|
|
|
|
|
|
|
|
On the other hand, the distributed layout can be used with any solver
|
|
|
|
but UMFPACK and SuperLU; therefore, if any of these two solvers has already
|
|
|
|
been selected, the coarsest-level solver is changed to block-Jacobi,
|
|
|
|
with the previously chosen solver applied to the local blocks.
|
|
|
|
Likewise, the replicated layout can be used with any solver but SuperLu\_Dist;
|
|
|
|
therefore, if SuperLu\_Dist has been previously set, the coarsest-level
|
|
|
|
solver is changed to the default sequential solver.
|
|
|
|
|
|
|
|
%The \verb|what,val| pairs described here are those of the predefined
|
|
|
|
%moother/solver objects; newly developed solvers may define new pairs
|
|
|
|
%according to their needs.
|
|
|
|
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
%\begin{tabular}{|p{5cm}|l|p{2.4cm}|p{2.5cm}|p{5cm}|}
|
|
|
|
\begin{tabular}{|p{3.6cm}|l|p{2.4cm}|p{2.4cm}|p{7.2cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{type of the multilevel preconditioner}}\\ \hline
|
|
|
|
%\verb|mld_ml_cycle_| \par
|
|
|
|
\verb|'ML_CYCLE'| & \verb|character(len=*)|
|
|
|
|
& \texttt{'VCYCLE'} \par \texttt{'WCYCLE'} \par \texttt{'KCYCLE'} \par
|
|
|
|
\texttt{'MULT'} \par \texttt{'ADD'}
|
|
|
|
& \texttt{'VCYCLE'}
|
|
|
|
&Multilevel cycle: V-cycle, W-cycle, K-cycle, hybrid Multiplicative Schwarz,
|
|
|
|
and Additive Schwarz. \par
|
|
|
|
Note that hybrid Multiplicative Schwarz is equivalent to V-cycle and
|
|
|
|
is included for compatibility with previous versions of MLD2P4. \\ \hline
|
|
|
|
%\verb|mld_outer_sweeps_| \par
|
|
|
|
\verb|'OUTER_SWEEPS'| & \texttt{integer} &
|
|
|
|
Any integer \par number $\ge 1$ & 1 &
|
|
|
|
Number of multilevel cycles. \\ \hline
|
|
|
|
%\verb|mld_smoother_type_| \par \verb|SMOOTHER_TYPE| & \verb|character(len=*)|
|
|
|
|
% & \texttt{'JACOBI'} \ \ \ \texttt{'BJAC'} \ \ \ \texttt{'AS'}
|
|
|
|
% & \texttt{'AS'}
|
|
|
|
% & Basic predefined one-level preconditioner
|
|
|
|
% (i.e., smoother): Jacobi, block Jacobi, AS. \\ \hline
|
|
|
|
%\verb|mld_smoother_pos_| \par \verb|SMOOTHER_POS| & \verb|character(len=*)|
|
|
|
|
% & \texttt{'PRE'} \ \ \ \texttt{'POST'} \ \ \ \texttt{'TWOSIDE'}
|
|
|
|
% & \texttt{'TWOSIDE'}
|
|
|
|
% & ``Position'' of the smoother: pre-smoother, post-smoother,
|
|
|
|
% pre- and post-smoother. \\
|
|
|
|
%\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the multilevel cycle and the number of cycles to
|
|
|
|
be applied.
|
|
|
|
\label{tab:p_cycle}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
%\begin{tabular}{|p{5cm}|l|p{2.4cm}|p{2.5cm}|p{5cm}|}
|
|
|
|
\begin{tabular}{|p{3.9cm}|l|p{2.3cm}|p{2.9cm}|p{6.9cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{aggregation algorithm}} \\ \hline
|
|
|
|
%\verb|mld_min_coarse_size_| \par
|
|
|
|
\verb|'MIN_COARSE_SIZE'| & \verb|integer|
|
|
|
|
& Any number \par $> 0$
|
|
|
|
& $\lfloor 40 \sqrt[3]{n} \rfloor$, where $n$ is the dimension
|
|
|
|
of the matrix at the finest level
|
|
|
|
& Coarse size threshold. The aggregation stops
|
|
|
|
if the global number of variables of the
|
|
|
|
computed coarsest matrix
|
|
|
|
is lower than or equal to this threshold
|
|
|
|
(see Note).
|
|
|
|
% or \par
|
|
|
|
% the coarsening ratio is lower than or equal to
|
|
|
|
% its value (see \verb|mld_min_aggr_ratio_|), or \par
|
|
|
|
% the maximum number of levels is reached
|
|
|
|
% (see \verb|mld_n_prec_levs_|).
|
|
|
|
\\ \hline
|
|
|
|
%\verb|mld_min_cr_ratio_| \par
|
|
|
|
\verb|'MIN_CR_RATIO'| & \verb|real|
|
|
|
|
& Any number \par $> 1$
|
|
|
|
& 1.5
|
|
|
|
& Minimum coarsening ratio. The aggregation stops
|
|
|
|
if the ratio between the matrix dimensions
|
|
|
|
at two consecutive levels is lower than or equal to this
|
|
|
|
threshold (see Note).\\ \hline
|
|
|
|
%\verb|mld_max_levs_| \par
|
|
|
|
\verb|'MAX_LEVS'| & \verb|integer|
|
|
|
|
& Any integer \par number $> 1$
|
|
|
|
& 20
|
|
|
|
& Maximum number of levels. The aggregation stops
|
|
|
|
if the number of levels reaches this value (see Note). \\ \hline
|
|
|
|
%\verb|mld_par_aggr_alg_| \par
|
|
|
|
\verb|'PAR_AGGR_ALG'| & \verb|character(len=*)| \hspace*{-3mm}
|
|
|
|
& \texttt{'DEC'}, \texttt{'SYMDEC'}
|
|
|
|
& \texttt{'DEC'}
|
|
|
|
& Parallel aggregation algorithm. \par Currently, only the
|
|
|
|
decoupled aggregation (\verb|DEC|) is available; the
|
|
|
|
\verb|SYMDEC| option applies decoupled
|
|
|
|
aggregation to the sparsity pattern
|
|
|
|
of $A+A^T$.\\ \hline
|
|
|
|
%\verb|mld_aggr_type_| \par
|
|
|
|
\verb|'AGGR_TYPE'| & \verb|character(len=*)| \hspace*{-3mm}
|
|
|
|
& \textbf{\texttt{'VMB'}} & \textbf{\texttt{'VMB'}}
|
|
|
|
& Type of aggregation algorithm: currently, the scalar aggregation
|
|
|
|
algorithm by Van\v{e}k, Mandel and Brezina is implemented
|
|
|
|
\cite{VANEK_MANDEL_BREZINA}. \\ \hline
|
|
|
|
%\verb|mld_aggr_prol_| \par
|
|
|
|
\verb|'AGGR_PROL'| & \verb|character(len=*)| \hspace*{-3mm}
|
|
|
|
& \texttt{'SMOOTHED'}, \texttt{'UNSMOOTHED'} & \texttt{'SMOOTHED'}
|
|
|
|
& Prolongator used by the aggregation algorithm: smoothed or unsmoothed
|
|
|
|
(i.e., tentative prolongator). \\
|
|
|
|
\hline
|
|
|
|
\multicolumn{5}{|l|}{{\bfseries Note.} The aggregation algorithm stops when
|
|
|
|
at least one of the following criteria is met:
|
|
|
|
the coarse size threshold, the} \\
|
|
|
|
\multicolumn{5}{|l|}{maximum coarsening ratio, or the maximum number
|
|
|
|
of levels is reached. Therefore, the actual number of levels may be} \\
|
|
|
|
\multicolumn{5}{|l|}{smaller than the specified maximum number
|
|
|
|
of levels. } \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the aggregation algorithm.
|
|
|
|
\label{tab:p_aggregation}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
%\begin{tabular}{|p{5cm}|l|p{2.4cm}|p{2.5cm}|p{5cm}|}
|
|
|
|
\begin{tabular}{|p{3.8cm}|l|p{2.5cm}|p{2.3cm}|p{6.6cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\verb|mld_aggr_ord_| \par
|
|
|
|
\verb|'AGGR_ORD'| & \verb|character(len=*)|
|
|
|
|
& \texttt{'NATURAL'} \par \texttt{'DEGREE'}
|
|
|
|
& \texttt{'NATURAL'}
|
|
|
|
& Initial ordering of indices for the aggregation
|
|
|
|
algorithm: either natural ordering or sorted by
|
|
|
|
descending degrees of the nodes in the
|
|
|
|
matrix graph. \\ \hline
|
|
|
|
%Since aggregation is
|
|
|
|
%heuristic, results will be different.
|
|
|
|
%\verb|mld_aggr_thresh_| \par
|
|
|
|
\verb|'AGGR_THRESH'| & \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
& Any~real \par number~$\in [0, 1]$
|
|
|
|
& 0.01
|
|
|
|
& The threshold $\theta$ in the aggregation algorithm,
|
|
|
|
see (\ref{eq:strongly_coup}) in Section~\ref{sec:aggregation}.
|
|
|
|
See also the note at the bottom of this table. \\ \hline
|
|
|
|
%%\verb|mld_aggr_scale_| \par
|
|
|
|
% \verb|AGGR_SCALE| & \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
% & Any~real \par number~$\in [0, 1]$
|
|
|
|
% & 1.0
|
|
|
|
% & Scale factor applied to the threshold in going
|
|
|
|
% from level $ilev$ to level $ilev+1$. \\ \hline
|
|
|
|
%\verb|mld_aggr_omega_alg_| \par
|
|
|
|
%\verb|'AGGR_OMEGA_ALG'|& \verb|character(len=*)|
|
|
|
|
% & \texttt{'EIG\_EST'} \par \texttt{'USER\_CHOICE'}
|
|
|
|
% & \texttt{'EIG\_EST'}
|
|
|
|
% & How the damping parameter $\omega$ in the
|
|
|
|
% smoothed aggregation is obtained:
|
|
|
|
% either via an estimate of the spectral radius of
|
|
|
|
% $D^{-1}A$, where $A$ is the matrix at the current
|
|
|
|
% level and $D$ is the diagonal matrix with
|
|
|
|
% the same diagonal entires as $A$, or explicily
|
|
|
|
% specified by the user. \\ \hline
|
|
|
|
%\verb|mld_aggr_eig_| \par
|
|
|
|
%\verb|'AGGR_EIG'| & \verb|character(len=*)|
|
|
|
|
% & \texttt{'A\_NORMI'}
|
|
|
|
% & \texttt{'A\_NORMI'}
|
|
|
|
% & How to estimate the spectral radius of $D^{-1}A$.
|
|
|
|
% Currently only the infinity norm estimate
|
|
|
|
% is available. \\ \hline
|
|
|
|
%\verb|mld_aggr_omega_val_| \par
|
|
|
|
%\verb|'AGGR_OMEGA_VAL'| & \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
% & Any real \par number $>0$
|
|
|
|
% & $4/(3\rho(D^{-1}A))$
|
|
|
|
% & Damping parameter $\omega$ in the smoothed aggregation algorithm.
|
|
|
|
% It must be set by the user if
|
|
|
|
% \verb|USER_CHOICE| was specified for
|
|
|
|
% \verb|mld_aggr_omega_alg_|,
|
|
|
|
% otherwise it is computed by the library, using the
|
|
|
|
% selected estimate of the spectral radius $\rho(D^{-1}A)$ of
|
|
|
|
% $D^{-1}A$.\\ \hline
|
|
|
|
%\verb|mld_aggr_filter_| \par
|
|
|
|
\verb|'AGGR_FILTER'|
|
|
|
|
& \verb|character(len=*)|
|
|
|
|
& \texttt{'FILTER'} \par \texttt{'NOFILTER'}
|
|
|
|
& \texttt{'NOFILTER'} & Matrix used in computing the smoothed
|
|
|
|
prolongator: filtered or unfiltered (see~(\ref{eq:filtered}) in Section~\ref{sec:aggregation}). \\
|
|
|
|
\hline
|
|
|
|
\multicolumn{5}{|l|}{{\bfseries Note.} Different thresholds at different levels, such as
|
|
|
|
those used in \cite[Section~5.1]{VANEK_MANDEL_BREZINA}, can be easily set by
|
|
|
|
invoking the rou-} \\
|
|
|
|
\multicolumn{5}{|l|}{tine \texttt{set} with
|
|
|
|
the parameter \texttt{ilev}.} \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the aggregation algorithm (continued).
|
|
|
|
\label{tab:p_aggregation_1}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{|p{3.9cm}|l|p{1.7cm}|p{1.7cm}|p{8.6cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{coarse-space correction at the coarsest level}}\\ \hline
|
|
|
|
%\verb|mld_coarse_mat_| \par
|
|
|
|
\verb|'COARSE_MAT'| & \verb|character(len=*)|
|
|
|
|
& \texttt{'DIST'} \par \texttt{'REPL'}
|
|
|
|
& \texttt{'REPL'}
|
|
|
|
& Coarsest matrix layout: distributed among the processes or
|
|
|
|
replicated on each of them. \\ \hline
|
|
|
|
%\verb|mld_coarse_solve_| \par
|
|
|
|
\verb|'COARSE_SOLVE'| & \verb|character(len=*)|
|
|
|
|
& \texttt{'MUMPS'} \par \texttt{'UMF'} \par
|
|
|
|
\texttt{'SLU'} \par \texttt{'SLUDIST'} \par
|
|
|
|
\texttt{'JACOBI'} \par \texttt{'GS'} \par \texttt{'BJAC'}
|
|
|
|
& See~Note.
|
|
|
|
& Solver used at the coarsest level: sequential
|
|
|
|
LU from MUMPS, UMFPACK, or SuperLU
|
|
|
|
(plus tri\-an\-gular solve);
|
|
|
|
distributed LU from MUMPS or SuperLU\_Dist
|
|
|
|
(plus triangular solve);
|
|
|
|
point-Jacobi, hybrid Gauss-Seidel or block-Jacobi. \par
|
|
|
|
Note that \texttt{UMF} and \texttt{SLU} require the coarsest
|
|
|
|
matrix to be replicated, \texttt{SLUDIST}, \texttt{JACOBI},
|
|
|
|
\texttt{GS} and \texttt{BJAC} require it to be
|
|
|
|
distributed, and \texttt{MUMPS} can be used with either
|
|
|
|
a replicated or a distributed matrix. When any of the previous
|
|
|
|
solvers is specified, the matrix layout is set to a default
|
|
|
|
value which allows the use of the solver (see Remark 3, p.~24).
|
|
|
|
Note also that UMFPACK and SuperLU\_Dist
|
|
|
|
are available only in double precision. \\ \hline
|
|
|
|
%\verb|mld_coarse_subsolve_| \par
|
|
|
|
\verb|'COARSE_SUBSOLVE'| & \verb|character(len=*)|
|
|
|
|
& \texttt{'ILU'} \par \texttt{'ILUT'} \par \texttt{'MILU'} \par
|
|
|
|
\texttt{'MUMPS'} \par \texttt{'SLU'} \par \texttt{'UMF'}
|
|
|
|
& See~Note.
|
|
|
|
& Solver for the diagonal blocks of the coarse matrix,
|
|
|
|
in case the block Jacobi solver
|
|
|
|
is chosen as coarsest-level solver: ILU($p$), ILU($p,t$),
|
|
|
|
MILU($p$), LU from MUMPS, SuperLU or UMFPACK
|
|
|
|
(plus triangular solve).
|
|
|
|
Note that UMFPACK and SuperLU\_Dist
|
|
|
|
are available only in double precision. \\
|
|
|
|
\hline
|
|
|
|
\multicolumn{5}{|l|}{{\bfseries Note.} Defaults for \texttt{COARSE\_SOLVE} and
|
|
|
|
\texttt{COARSE\_SUBSOLVE} are chosen in the following order:} \\
|
|
|
|
\multicolumn{5}{|l|}{single precision version -- \texttt{MUMPS} if installed,
|
|
|
|
then \texttt{SLU} if installed,
|
|
|
|
\texttt{ILU} otherwise;}\\
|
|
|
|
\multicolumn{5}{|l|}{double precision version -- \texttt{UMF} if installed,
|
|
|
|
then \texttt{MUMPS} if installed, then \texttt{SLU} if
|
|
|
|
installed, \texttt{ILU} otherwise.}\\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the coarse-space correction at the coarsest
|
|
|
|
level.\label{tab:p_coarse}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{|p{3.9cm}|l|p{2cm}|p{1.5cm}|p{7.5cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{coarse-space correction at the coarsest level}}\\ \hline
|
|
|
|
%\verb|mld_coarse_sweeps_| \par
|
|
|
|
\verb|'COARSE_SWEEPS'| & \verb|integer|
|
|
|
|
& Any integer \par number $> 0$
|
|
|
|
& 10
|
|
|
|
& Number of sweeps when \verb|JACOBI|, \verb|GS| or \verb|BJAC|
|
|
|
|
is chosen as coarsest-level solver. \\ \hline
|
|
|
|
%\verb|mld_coarse_fillin_| \par
|
|
|
|
\verb|'COARSE_FILLIN'| & \verb|integer|
|
|
|
|
& Any integer \par number $\ge 0$
|
|
|
|
& 0
|
|
|
|
& Fill-in level $p$ of the ILU factorizations. \\ \hline
|
|
|
|
%\verb|mld_coarse_iluthrs_| \par
|
|
|
|
\verb|'COARSE_ILUTHRS'|
|
|
|
|
& \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
& Any real \par number $\ge 0$
|
|
|
|
& 0
|
|
|
|
& Drop tolerance $t$ in the ILU($p,t$) factorization. \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the coarse-space correction at the coarsest
|
|
|
|
level (continued).\label{tab:p_coarse_1}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
\small
|
|
|
|
\begin{tabular}{|p{3.6cm}|l|p{1.9cm}|p{3.6cm}|p{6.5cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\multicolumn{5}{|c|}{\emph{basic one-level preconditioner (smoother)}} \\ \hline
|
|
|
|
%\verb|mld_smoother_type_| \par
|
|
|
|
\verb|'SMOOTHER_TYPE'| & \verb|character(len=*)|
|
|
|
|
& \verb|'JACOBI'| \par \verb|'GS'| \par \verb|'BGS'| \par \verb|'BJAC'|
|
|
|
|
\par \verb|'AS'|
|
|
|
|
& \verb|'FBGS'|
|
|
|
|
& Type of smoother used in the multilevel preconditioner:
|
|
|
|
point-Jacobi, hybrid (forward) Gauss-Seidel,
|
|
|
|
hybrid backward Gauss-Seidel, block-Jacobi, and
|
|
|
|
Additive Schwarz. \par
|
|
|
|
It is ignored by one-level preconditioners. \\ \hline
|
|
|
|
%\verb|mld_sub_solve_| \par
|
|
|
|
\verb|'SUB_SOLVE'| & \verb|character(len=*)|
|
|
|
|
& \texttt{'JACOBI'} \par
|
|
|
|
\texttt{'GS'} \par \texttt{'BGS'} \par \texttt{'ILU'} \par
|
|
|
|
\texttt{'ILUT'} \par \texttt{'MILU'} \par
|
|
|
|
\par \texttt{'MUMPS'} \par \texttt{'SLU'} \par \texttt{'UMF'}
|
|
|
|
& \texttt{GS} and \texttt{BGS} for pre- and post-smoothers
|
|
|
|
of multilevel preconditioners, respectively \par
|
|
|
|
\texttt{ILU} for block-Jacobi and Additive Schwarz
|
|
|
|
one-level preconditioners
|
|
|
|
& The local solver to be used with the smoother or one-level
|
|
|
|
preconditioner (see Remark~2, page~24): point-Jacobi,
|
|
|
|
hybrid (forward) Gauss-Seidel, hybrid backward
|
|
|
|
Gauss-Seidel, ILU($p$), ILU($p,t$), MILU($p$),
|
|
|
|
LU from MUMPS, SuperLU or UMFPACK
|
|
|
|
(plus triangular solve). See Note for details on hybrid
|
|
|
|
Gauss-Seidel. \\ \hline
|
|
|
|
%\verb|mld_moother_sweeps_| \par
|
|
|
|
\verb|'SMOOTHER_SWEEPS'| & \verb|integer|
|
|
|
|
& Any integer \par number~$\ge 0$
|
|
|
|
& 1
|
|
|
|
& Number of sweeps of the smoother or one-level preconditioner.
|
|
|
|
In the multilevel case, no pre-smother or
|
|
|
|
post-smoother is used if this parameter is set to 0
|
|
|
|
together with \verb|pos='PRE'| or \verb|pos='POST|,
|
|
|
|
respectively. \\ \hline
|
|
|
|
%\verb|mld_sub_ovr_| \par
|
|
|
|
\verb|'SUB_OVR'| & \verb|integer|
|
|
|
|
& Any integer \par number~$\ge 0$
|
|
|
|
& 1
|
|
|
|
& Number of overlap layers, for Additive Schwarz only. \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the smoother or the details of the one-level preconditioner.
|
|
|
|
\label{tab:p_smoother}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\bsideways
|
|
|
|
\begin{center}
|
|
|
|
\small
|
|
|
|
\begin{tabular}{|p{3cm}|l|p{2.5cm}|p{2.2cm}|p{7.1cm}|}
|
|
|
|
\hline
|
|
|
|
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
|
|
|
|
\textsc{comments} \\ \hline
|
|
|
|
%\verb|mld_sub_restr_| \par
|
|
|
|
\verb|'SUB_RESTR'| & \verb|character(len=*)|
|
|
|
|
& \texttt{'HALO'} \par \texttt{'NONE'}
|
|
|
|
& \texttt{'HALO'}
|
|
|
|
& Type of restriction operator, for Additive Schwarz only:
|
|
|
|
\texttt{HALO} for taking into account the overlap, \texttt{NONE}
|
|
|
|
for neglecting it. \par
|
|
|
|
Note that \texttt{HALO} must be chosen for
|
|
|
|
the classical Addditive Schwarz smoother and its RAS variant.\\ \hline
|
|
|
|
%\verb|mld_sub_prol_| \par
|
|
|
|
\verb|'SUB_PROL'| & \verb|character(len=*)|
|
|
|
|
& \texttt{'SUM'} \par \texttt{'NONE'}
|
|
|
|
& \texttt{'NONE'}
|
|
|
|
& Type of prolongation operator, for Additive Schwarz only:
|
|
|
|
\texttt{SUM} for adding the contributions from the overlap, \texttt{NONE}
|
|
|
|
for neglecting them. \par
|
|
|
|
Note that \texttt{SUM} must be chosen for the classical Additive
|
|
|
|
Schwarz smoother, and \texttt{NONE} for its RAS variant. \\ \hline
|
|
|
|
%\verb|mld_sub_fillin_| \par
|
|
|
|
\verb|'SUB_FILLIN'| & \verb|integer|
|
|
|
|
& Any integer \par number~$\ge 0$
|
|
|
|
& 0
|
|
|
|
& Fill-in level $p$ of the incomplete LU factorizations. \\ \hline
|
|
|
|
%\verb|mld_sub_iluthrs_| \par
|
|
|
|
\verb|'SUB_ILUTHRS'| & \verb|real(|\emph{kind\_parameter}\verb|)|
|
|
|
|
& Any real number~$\ge 0$
|
|
|
|
& 0
|
|
|
|
& Drop tolerance $t$ in the ILU($p,t$) factorization. \\ %\hline
|
|
|
|
%\verb|mld_sub_ren_| \par \verb|SUB_REN| & \verb|character(len=*)|
|
|
|
|
% & \texttt{'RENUM\_NONE'} \texttt{'RENUM\_GLOBAL'} %, \texttt{'RENUM_GPS'}
|
|
|
|
% & \texttt{'RENUM\_NONE'}
|
|
|
|
% & Row and column reordering of the local submatrices: no reordering,
|
|
|
|
% or reordering according to the global numbering of the rows and
|
|
|
|
% columns of the whole matrix. \\
|
|
|
|
% \verb|mld_solver_eps_| \par \verb|SOLVER_EPS| & \verb|real|
|
|
|
|
% & Any~real number
|
|
|
|
% & 0
|
|
|
|
% & Stopping tolerance for iterative local solver
|
|
|
|
% (currently only Gauss-Seidel); if $\le0$, then
|
|
|
|
% perform prespecified number of iterations. \\ \hline
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Parameters defining the smoother or the details of the one-level preconditioner
|
|
|
|
(continued).\label{tab:p_smoother_1}}
|
|
|
|
\esideways
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine build\label{sec:precbld}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call p%build(a,desc_a,info)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine builds the one-level preconditioner \verb|p| according to the requirements
|
|
|
|
made by the user through the routines \verb|init| and \verb|set|
|
|
|
|
(see Sections~\ref{sec:hier_bld} and~\ref{sec:smooth_bld} for multilevel preconditioners).
|
|
|
|
|
|
|
|
{\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
\verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\
|
|
|
|
& The sparse matrix structure containing the local part of the
|
|
|
|
matrix to be preconditioned. Note that \emph{x} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.
|
|
|
|
See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\
|
|
|
|
\verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\
|
|
|
|
& The communication descriptor of \verb|a|. See the PSBLAS User's Guide for
|
|
|
|
details \cite{PSBLASGUIDE}.\\
|
|
|
|
%\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
% & The preconditioner data structure. Note that \emph{x} must be chosen according
|
|
|
|
% to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\vskip1.5\baselineskip
|
|
|
|
For compatibility with the previous versions of MLD2P4, this routine can be also invoked
|
|
|
|
as follows:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call mld_precbld(p,what,val,info)|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
In this case, the routine can be used to build multilevel preconditioners too.
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine hierarchy\_build\label{sec:hier_bld}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call p%hierarchy_build(a,desc_a,info)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine builds the hierarchy of matrices and restriction/prolongation
|
|
|
|
operators for the multilevel preconditioner \verb|p|, according to the requirements
|
|
|
|
made by the user through the routines \verb|init| and \verb|set|.
|
|
|
|
|
|
|
|
{\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
\verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\
|
|
|
|
& The sparse matrix structure containing the local part of the
|
|
|
|
matrix to be preconditioned. Note that \emph{x} must be chosen according
|
|
|
|
to the real/complex,
|
|
|
|
single/double precision version of MLD2P4 under use.
|
|
|
|
See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\
|
|
|
|
\verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\
|
|
|
|
& The communication descriptor of \verb|a|. See the PSBLAS User's Guide for
|
|
|
|
details \cite{PSBLASGUIDE}.\\
|
|
|
|
%\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
% & The preconditioner data structure. Note that \emph{x} must be chosen according
|
|
|
|
% to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine smoothers\_build\label{sec:smooth_bld}}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call p%smoothers_build(a,desc_a,p,info)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine builds the smoothers and the coarsest-level solvers for the
|
|
|
|
multilevel preconditioner \verb|p|, according to the requirements made by
|
|
|
|
the user through the routines \verb|init| and \verb|set|, and based on the aggregation
|
|
|
|
hierarchy produced by a previous call to \verb|hierarchy_build|
|
|
|
|
(see Section~\ref{sec:hier_bld}).
|
|
|
|
|
|
|
|
{\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
\verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\
|
|
|
|
& The sparse matrix structure containing the local part of the
|
|
|
|
matrix to be preconditioned. Note that \emph{x} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.
|
|
|
|
See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\
|
|
|
|
\verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\
|
|
|
|
& The communication descriptor of \verb|a|. See the PSBLAS User's Guide for
|
|
|
|
details \cite{PSBLASGUIDE}.\\
|
|
|
|
%\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
% & The preconditioner data structure. Note that \emph{x} must be chosen according
|
|
|
|
% to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
\subsection{Subroutine apply\label{sec:precapply}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call p%apply(x,y,desc_a,info [,trans,work])|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine computes $y = op(B^{-1})\, x$, where $B$ is a previously built
|
|
|
|
preconditioner, stored into \verb|p|, and $op$
|
|
|
|
denotes the preconditioner itself or its transpose, according to
|
|
|
|
the value of \verb|trans|.
|
|
|
|
Note that, when MLD2P4 is used with a Krylov solver from PSBLAS,
|
|
|
|
\verb|p%apply| is called within the PSBLAS routine \verb|psb_krylov|
|
|
|
|
and hence it is completely transparent to the user.
|
|
|
|
|
|
|
|
{\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
%\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
% & The preconditioner data structure, containing the local part of $M$.
|
|
|
|
% Note that \emph{x} must be chosen according
|
|
|
|
% to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|x| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(in)|.\\
|
|
|
|
& The local part of the vector $x$. Note that \emph{type} and
|
|
|
|
\emph{kind\_parameter} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|y| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(out)|.\\
|
|
|
|
& The local part of the vector $y$. Note that \emph{type} and
|
|
|
|
\emph{kind\_parameter} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\
|
|
|
|
& The communication descriptor associated to the matrix to be
|
|
|
|
preconditioned.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\verb|trans| & \verb|character(len=1), optional, intent(in).|\\
|
|
|
|
& If \verb|trans| = \verb|'N','n'| then $op(B^{-1}) = B^{-1}$;
|
|
|
|
if \verb|trans| = \verb|'T','t'| then $op(B^{-1}) = B^{-T}$
|
|
|
|
(transpose of $B^{-1})$; if \verb|trans| = \verb|'C','c'| then $op(B^{-1}) = B^{-C}$
|
|
|
|
(conjugate transpose of $B^{-1})$.\\
|
|
|
|
\verb|work| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), optional, target|.\\
|
|
|
|
& Workspace. Its size should be at
|
|
|
|
least \verb|4 * psb_cd_get_local_| \verb|cols(desc_a)| (see the PSBLAS User's Guide).
|
|
|
|
Note that \emph{type} and \emph{kind\_parameter} must be chosen according
|
|
|
|
to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\vskip1.5\baselineskip
|
|
|
|
For compatibility with the previous versions of MLD2P4, this routine can be also invoked
|
|
|
|
as follows:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call mld_precaply(p,what,val,info)|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine free\label{sec:precfree}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call p%free(p,info)|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine deallocates the preconditioner data structure \verb|p|.
|
|
|
|
|
|
|
|
{\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{10.5cm}}
|
|
|
|
%\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
|
|
|
|
% & The preconditioner data structure. Note that \emph{x} must be chosen according
|
|
|
|
% to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\vskip1.5\baselineskip
|
|
|
|
For compatibility with the previous versions of MLD2P4, this routine can be also invoked
|
|
|
|
as follows:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call mld_precfree(p,info)|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
\subsection{Subroutine descr\label{sec:precdescr}}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call p%descr(info, [iout])|\\
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This routine prints a description of the preconditioner \verb|p| to the standard output or
|
|
|
|
to a file. It must be called after \verb|hierachy_build| and \verb|smoothers_build|,
|
|
|
|
or \verb|build|, have been called.
|
|
|
|
|
|
|
|
{\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip
|
|
|
|
|
|
|
|
\begin{tabular}{p{1.2cm}p{12cm}}
|
|
|
|
%\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(in)|.\\
|
|
|
|
% & The preconditioner data structure. Note that \emph{x} must be chosen according
|
|
|
|
% to the real/complex, single/double precision version of MLD2P4 under use.\\
|
|
|
|
\verb|info| & \verb|integer, intent(out)|.\\
|
|
|
|
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
|
|
|
|
\verb|iout| & \verb|integer, intent(in), optional|.\\
|
|
|
|
& The id of the file where the preconditioner description
|
|
|
|
will be printed; the default is the standard output.\\
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\vskip1.5\baselineskip
|
|
|
|
For compatibility with the previous versions of MLD2P4, this routine can be also invoked
|
|
|
|
as follows:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\verb|call mld_precdescr(p,info [,iout])|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
|
|
%%% Local Variables:
|
|
|
|
%%% mode: latex
|
|
|
|
%%% TeX-master: "userguide"
|
|
|
|
%%% End:
|