MLPREC:
Changed naming scheme for bjac_aply; refactored code to different calling tree.stopcriterion
parent
f57aa144b9
commit
38ff0f0373
@ -1,555 +0,0 @@
|
|||||||
!!$
|
|
||||||
!!$
|
|
||||||
!!$ MLD2P4
|
|
||||||
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
||||||
!!$ based on PSBLAS (Parallel Sparse BLAS v.2.0)
|
|
||||||
!!$
|
|
||||||
!!$ (C) Copyright 2007 Alfredo Buttari University of Rome Tor Vergata
|
|
||||||
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
|
||||||
!!$ Daniela di Serafino Second University of Naples
|
|
||||||
!!$ Salvatore Filippone University of Rome Tor Vergata
|
|
||||||
!!$
|
|
||||||
!!$ Redistribution and use in source and binary forms, with or without
|
|
||||||
!!$ modification, are permitted provided that the following conditions
|
|
||||||
!!$ are met:
|
|
||||||
!!$ 1. Redistributions of source code must retain the above copyright
|
|
||||||
!!$ notice, this list of conditions and the following disclaimer.
|
|
||||||
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
|
||||||
!!$ notice, this list of conditions, and the following disclaimer in the
|
|
||||||
!!$ documentation and/or other materials provided with the distribution.
|
|
||||||
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
|
||||||
!!$ not be used to endorse or promote products derived from this
|
|
||||||
!!$ software without specific written permission.
|
|
||||||
!!$
|
|
||||||
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
||||||
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
||||||
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
||||||
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
||||||
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
||||||
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
||||||
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
||||||
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
||||||
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
||||||
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
||||||
!!$ POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
!!$
|
|
||||||
!!$
|
|
||||||
! File mld_dbjac_aply.f90
|
|
||||||
!
|
|
||||||
! Subroutine: mld_dbjac_aply
|
|
||||||
! Version: real
|
|
||||||
!
|
|
||||||
! This routine computes
|
|
||||||
!
|
|
||||||
! Y = beta*Y + alpha*op(K^(-1))*X,
|
|
||||||
!
|
|
||||||
! where
|
|
||||||
! - K is a suitable matrix, as specified below,
|
|
||||||
! - op(K^(-1)) is K^(-1) or its transpose, according to the value of trans,
|
|
||||||
! - X and Y are vectors,
|
|
||||||
! - alpha and beta are scalars.
|
|
||||||
!
|
|
||||||
! Depending on K, alpha, beta (and on the communication descriptor desc_data
|
|
||||||
! - see the arguments below), the above computation may correspond to one of
|
|
||||||
! the following tasks:
|
|
||||||
!
|
|
||||||
! 1. Application of a block-Jacobi preconditioner associated to a matrix A
|
|
||||||
! distributed among the processes. Here K is the preconditioner, op(K^(-1))
|
|
||||||
! = K^(-1), alpha = 1 and beta = 0.
|
|
||||||
!
|
|
||||||
! 2. Application of block-Jacobi sweeps to compute an approximate solution of
|
|
||||||
! a linear system
|
|
||||||
! A*Y = X,
|
|
||||||
!
|
|
||||||
! distributed among the processes (note that a single block-Jacobi sweep,
|
|
||||||
! with null starting guess, corresponds to the application of a block-Jacobi
|
|
||||||
! preconditioner). Here K^(-1) denotes the iteration matrix of the
|
|
||||||
! block-Jacobi solver, op(K^(-1)) = K^(-1), alpha = 1 and beta = 0.
|
|
||||||
!
|
|
||||||
! 3. Solution, through the LU factorization, of a linear system
|
|
||||||
!
|
|
||||||
! A*Y = X,
|
|
||||||
!
|
|
||||||
! distributed among the processes. Here K = L*U = A, op(K^(-1)) = K^(-1),
|
|
||||||
! alpha = 1 and beta = 0.
|
|
||||||
!
|
|
||||||
! 4. (Approximate) solution, through the LU or incomplete LU factorization, of
|
|
||||||
! a linear system
|
|
||||||
! A*Y = X,
|
|
||||||
!
|
|
||||||
! replicated on the processes. Here K = L*U = A or K = L*U ~ A, op(K^(-1)) =
|
|
||||||
! K^(-1), alpha = 1 and beta = 0.
|
|
||||||
!
|
|
||||||
! The block-Jacobi preconditioner or solver and the L and U factors of the LU
|
|
||||||
! or ILU factorizations have been built by the routine mld_dbjac_bld and stored
|
|
||||||
! into the 'base preconditioner' data structure prec. See mld_dbjac_bld for more
|
|
||||||
! details.
|
|
||||||
!
|
|
||||||
! This routine is used by mld_dbaseprec_aply, to apply a 'base' block-Jacobi or
|
|
||||||
! Additive Schwarz (AS) preconditioner at any level of a multilevel preconditioner,
|
|
||||||
! or a block-Jacobi or LU or ILU solver at the coarsest level of a multilevel
|
|
||||||
! preconditioner.
|
|
||||||
!
|
|
||||||
! Inside mld_dbaseprec_aply, tasks 1, 3 and 4 may be selected if
|
|
||||||
! prec%iprcparm(smooth_sweeps_) = 1, while task 2 if prec%iprcparm(smooth_sweeps_)
|
|
||||||
! > 1. Furthermore, tasks 1, 2 and 3 may be performed if the matrix A is
|
|
||||||
! distributed among the processes (prec%iprcparm(mld_coarse_mat_) = mld_distr_mat_),
|
|
||||||
! while task 4 may be performed if A is replicated on the processes
|
|
||||||
! (prec%iprcparm(mld_coarse_mat_) = mld_repl_mat_). Note that the matrix A is
|
|
||||||
! distributed among the processes at each level of the multilevel preconditioner,
|
|
||||||
! except the coarsest one, where it may be either distributed or replicated on
|
|
||||||
! the processes. Furthermore, the tasks 2, 3 and 4 are performed only at the
|
|
||||||
! coarsest level. Note also that this routine manages implicitly the fact that
|
|
||||||
! the matrix is distributed or replicated, i.e. it does not make any explicit
|
|
||||||
! reference to the value of prec%iprcparm(mld_coarse_mat_).
|
|
||||||
!
|
|
||||||
!
|
|
||||||
! Arguments:
|
|
||||||
!
|
|
||||||
! alpha - real(kind(0.d0)), input.
|
|
||||||
! The scalar alpha.
|
|
||||||
! prec - type(mld_dbaseprec_type), input.
|
|
||||||
! The 'base preconditioner' data structure containing the local
|
|
||||||
! part of the preconditioner or solver.
|
|
||||||
! x - real(kind(0.d0)), dimension(:), input.
|
|
||||||
! The local part of the vector X.
|
|
||||||
! beta - real(kind(0.d0)), input.
|
|
||||||
! The scalar beta.
|
|
||||||
! y - real(kind(0.d0)), dimension(:), input/output.
|
|
||||||
! The local part of the vector Y.
|
|
||||||
! desc_data - type(psb_desc_type), input.
|
|
||||||
! The communication descriptor associated to the matrix to be
|
|
||||||
! preconditioned or 'inverted'.
|
|
||||||
! trans - character(len=1), input.
|
|
||||||
! If trans='N','n' then op(K^(-1)) = K^(-1);
|
|
||||||
! if trans='T','t' then op(K^(-1)) = K^(-T) (transpose of K^(-1)).
|
|
||||||
! If prec%iprcparm(smooth_sweeps_) > 1, the value of trans provided
|
|
||||||
! in input is ignored.
|
|
||||||
! work - real(kind(0.d0)), dimension (:), target.
|
|
||||||
! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data).
|
|
||||||
! info - integer, output.
|
|
||||||
! Error code.
|
|
||||||
!
|
|
||||||
subroutine mld_dbjac_aply(alpha,prec,x,beta,y,desc_data,trans,work,info)
|
|
||||||
|
|
||||||
use psb_base_mod
|
|
||||||
use mld_prec_mod, mld_protect_name => mld_dbjac_aply
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
! Arguments
|
|
||||||
type(psb_desc_type), intent(in) :: desc_data
|
|
||||||
type(mld_dbaseprc_type), intent(in) :: prec
|
|
||||||
real(kind(0.d0)),intent(in) :: x(:)
|
|
||||||
real(kind(0.d0)),intent(inout) :: y(:)
|
|
||||||
real(kind(0.d0)),intent(in) :: alpha,beta
|
|
||||||
character(len=1),intent(in) :: trans
|
|
||||||
real(kind(0.d0)),target, intent(inout) :: work(:)
|
|
||||||
integer, intent(out) :: info
|
|
||||||
|
|
||||||
! Local variables
|
|
||||||
integer :: n_row,n_col
|
|
||||||
real(kind(1.d0)), pointer :: ww(:), aux(:), tx(:),ty(:)
|
|
||||||
integer :: ictxt,np,me,i, err_act
|
|
||||||
character(len=20) :: name
|
|
||||||
character :: trans_
|
|
||||||
|
|
||||||
interface
|
|
||||||
subroutine mld_dumf_solve(flag,m,x,b,n,ptr,info)
|
|
||||||
integer, intent(in) :: flag,m,n,ptr
|
|
||||||
integer, intent(out) :: info
|
|
||||||
real(kind(1.d0)), intent(in) :: b(*)
|
|
||||||
real(kind(1.d0)), intent(inout) :: x(*)
|
|
||||||
end subroutine mld_dumf_solve
|
|
||||||
end interface
|
|
||||||
|
|
||||||
name='mld_dbjac_aply'
|
|
||||||
info = 0
|
|
||||||
call psb_erractionsave(err_act)
|
|
||||||
|
|
||||||
ictxt=psb_cd_get_context(desc_data)
|
|
||||||
call psb_info(ictxt, me, np)
|
|
||||||
|
|
||||||
trans_ = toupper(trans)
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
case('T','C')
|
|
||||||
case default
|
|
||||||
call psb_errpush(40,name)
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
|
|
||||||
n_row = psb_cd_get_local_rows(desc_data)
|
|
||||||
n_col = psb_cd_get_local_cols(desc_data)
|
|
||||||
|
|
||||||
if (n_col <= size(work)) then
|
|
||||||
ww => work(1:n_col)
|
|
||||||
if ((4*n_col+n_col) <= size(work)) then
|
|
||||||
aux => work(n_col+1:)
|
|
||||||
else
|
|
||||||
allocate(aux(4*n_col),stat=info)
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4025
|
|
||||||
call psb_errpush(info,name,i_err=(/4*n_col,0,0,0,0/),&
|
|
||||||
& a_err='real(kind(1.d0))')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
endif
|
|
||||||
else
|
|
||||||
allocate(ww(n_col),aux(4*n_col),stat=info)
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4025
|
|
||||||
call psb_errpush(info,name,i_err=(/5*n_col,0,0,0,0/),&
|
|
||||||
& a_err='real(kind(1.d0))')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (prec%iprcparm(mld_smooth_sweeps_) == 1) then
|
|
||||||
!
|
|
||||||
! TASKS 1, 3 and 4
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(prec%iprcparm(mld_sub_solve_))
|
|
||||||
case(mld_ilu_n_,mld_milu_n_,mld_ilu_t_)
|
|
||||||
!
|
|
||||||
! Apply a block-Jacobi preconditioner with ILU(k)/MILU(k)/ILU(k,t)
|
|
||||||
! factorization of the blocks (distributed matrix) or approximately
|
|
||||||
! solve a system through ILU(k)/MILU(k)/ILU(k,t) (replicated matrix).
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
|
|
||||||
call psb_spsm(done,prec%av(mld_l_pr_),x,dzero,ww,desc_data,info,&
|
|
||||||
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
|
||||||
if (info == 0) call psb_spsm(alpha,prec%av(mld_u_pr_),ww,beta,y,desc_data,info,&
|
|
||||||
& trans=trans_,unit='U',choice=psb_none_, work=aux)
|
|
||||||
|
|
||||||
case('T','C')
|
|
||||||
call psb_spsm(done,prec%av(mld_u_pr_),x,dzero,ww,desc_data,info,&
|
|
||||||
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
|
||||||
if (info == 0) call psb_spsm(alpha,prec%av(mld_l_pr_),ww,beta,y,desc_data,info,&
|
|
||||||
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in ILU subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
case(mld_slu_)
|
|
||||||
!
|
|
||||||
! Apply a block-Jacobi preconditioner with LU factorization of the
|
|
||||||
! blocks (distributed matrix) or approximately solve a local linear
|
|
||||||
! system through LU (replicated matrix). The SuperLU package is used
|
|
||||||
! to apply the LU factorization in both cases.
|
|
||||||
!
|
|
||||||
|
|
||||||
ww(1:n_row) = x(1:n_row)
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
call mld_dslu_solve(0,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
case('T','C')
|
|
||||||
call mld_dslu_solve(1,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in SLU subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
if (info ==0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
|
||||||
|
|
||||||
case(mld_sludist_)
|
|
||||||
!
|
|
||||||
! Solve a distributed linear system with the LU factorization.
|
|
||||||
! The SuperLU_DIST package is used.
|
|
||||||
!
|
|
||||||
|
|
||||||
ww(1:n_row) = x(1:n_row)
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
call mld_dsludist_solve(0,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
|
||||||
case('T','C')
|
|
||||||
call mld_dsludist_solve(1,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in SLUDist subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
if (info == 0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
|
||||||
|
|
||||||
case (mld_umf_)
|
|
||||||
!
|
|
||||||
! Apply a block-Jacobi preconditioner with LU factorization of the
|
|
||||||
! blocks (distributed matrix) or approximately solve a local linear
|
|
||||||
! system through LU (replicated matrix). The UMFPACK package is used
|
|
||||||
! to apply the LU factorization in both cases.
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
call mld_dumf_solve(0,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
case('T','C')
|
|
||||||
call mld_dumf_solve(1,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in UMF subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
if (info == 0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid mld_sub_solve_')
|
|
||||||
goto 9999
|
|
||||||
|
|
||||||
end select
|
|
||||||
if (info /= 0) then
|
|
||||||
call psb_errpush(4001,name,a_err='Error in subsolve Jacobi Sweeps = 1')
|
|
||||||
goto 9999
|
|
||||||
endif
|
|
||||||
|
|
||||||
else if (prec%iprcparm(mld_smooth_sweeps_) > 1) then
|
|
||||||
|
|
||||||
!
|
|
||||||
! TASK 2
|
|
||||||
!
|
|
||||||
! Apply prec%iprcparm(smooth_sweeps_) sweeps of a block-Jacobi solver
|
|
||||||
! to compute an approximate solution of a linear system.
|
|
||||||
!
|
|
||||||
! Note: trans is always 'N' here.
|
|
||||||
!
|
|
||||||
|
|
||||||
if (size(prec%av) < mld_ap_nd_) then
|
|
||||||
info = 4011
|
|
||||||
goto 9999
|
|
||||||
endif
|
|
||||||
|
|
||||||
allocate(tx(n_col),ty(n_col),stat=info)
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4025
|
|
||||||
call psb_errpush(info,name,i_err=(/2*n_col,0,0,0,0/),&
|
|
||||||
& a_err='real(kind(1.d0))')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
|
|
||||||
select case(prec%iprcparm(mld_sub_solve_))
|
|
||||||
case(mld_ilu_n_,mld_milu_n_,mld_ilu_t_)
|
|
||||||
!
|
|
||||||
! Use ILU(k)/MILU(k)/ILU(k,t) on the blocks.
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
|
|
||||||
tx = dzero
|
|
||||||
ty = dzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-done,prec%av(mld_ap_nd_),tx,done,ty,&
|
|
||||||
& prec%desc_data,info,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
call psb_spsm(done,prec%av(mld_l_pr_),ty,dzero,ww,&
|
|
||||||
& prec%desc_data,info,&
|
|
||||||
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
call psb_spsm(done,prec%av(mld_u_pr_),ww,dzero,tx,&
|
|
||||||
& prec%desc_data,info,&
|
|
||||||
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
end do
|
|
||||||
|
|
||||||
case('T','C')
|
|
||||||
tx = dzero
|
|
||||||
ty = dzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-done,prec%av(mld_ap_nd_),tx,done,ty,&
|
|
||||||
& prec%desc_data,info,work=aux,trans=trans_)
|
|
||||||
if (info /=0) exit
|
|
||||||
call psb_spsm(done,prec%av(mld_u_pr_),ty,dzero,ww,&
|
|
||||||
& prec%desc_data,info,&
|
|
||||||
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
call psb_spsm(done,prec%av(mld_l_pr_),ww,dzero,tx,&
|
|
||||||
& prec%desc_data,info,&
|
|
||||||
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
end do
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in ILU subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
|
|
||||||
case(mld_sludist_)
|
|
||||||
!
|
|
||||||
! Wrong choice: SuperLU_DIST
|
|
||||||
!
|
|
||||||
info = 4001
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid SuperLU_DIST with Jacobi sweeps >1')
|
|
||||||
goto 9999
|
|
||||||
|
|
||||||
case(mld_slu_)
|
|
||||||
!
|
|
||||||
! Use the LU factorization from SuperLU.
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
tx = dzero
|
|
||||||
ty = dzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-done,prec%av(mld_ap_nd_),tx,done,ty,&
|
|
||||||
& prec%desc_data,info,work=aux)
|
|
||||||
if(info /= 0) exit
|
|
||||||
|
|
||||||
call mld_dslu_solve(0,n_row,1,ty,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
if(info /= 0) exit
|
|
||||||
tx(1:n_row) = ty(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case('T','C')
|
|
||||||
tx = dzero
|
|
||||||
ty = dzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-done,prec%av(mld_ap_nd_),tx,done,ty,&
|
|
||||||
& prec%desc_data,info,work=aux,trans=trans_)
|
|
||||||
if(info /= 0) exit
|
|
||||||
call mld_dslu_solve(1,n_row,1,ty,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
if(info /= 0) exit
|
|
||||||
tx(1:n_row) = ty(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in SLU subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
|
|
||||||
case(mld_umf_)
|
|
||||||
!
|
|
||||||
! Use the LU factorization from UMFPACK.
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
tx = dzero
|
|
||||||
ty = dzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-done,prec%av(mld_ap_nd_),tx,done,ty,&
|
|
||||||
& prec%desc_data,info,work=aux)
|
|
||||||
if (info /= 0) exit
|
|
||||||
|
|
||||||
call mld_dumf_solve(0,n_row,ww,ty,n_row,&
|
|
||||||
& prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
if (info /= 0) exit
|
|
||||||
tx(1:n_row) = ww(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case('T','C')
|
|
||||||
tx = dzero
|
|
||||||
ty = dzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-done,prec%av(mld_ap_nd_),tx,done,ty,&
|
|
||||||
& prec%desc_data,info,work=aux,trans=trans_)
|
|
||||||
if (info /= 0) exit
|
|
||||||
|
|
||||||
call mld_dumf_solve(1,n_row,ww,ty,n_row,&
|
|
||||||
& prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
if (info /= 0) exit
|
|
||||||
tx(1:n_row) = ww(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in UMF subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid mld_sub_solve_')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4001
|
|
||||||
call psb_errpush(info,name,a_err='subsolve with Jacobi sweeps > 1')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
|
|
||||||
!
|
|
||||||
! Put the result into the output vector Y.
|
|
||||||
!
|
|
||||||
call psb_geaxpby(alpha,tx,beta,y,desc_data,info)
|
|
||||||
deallocate(tx,ty,stat=info)
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4001
|
|
||||||
call psb_errpush(info,name,a_err='final cleanup with Jacobi sweeps > 1')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
|
|
||||||
else
|
|
||||||
|
|
||||||
info = 10
|
|
||||||
call psb_errpush(info,name,&
|
|
||||||
& i_err=(/2,prec%iprcparm(mld_smooth_sweeps_),0,0,0/))
|
|
||||||
goto 9999
|
|
||||||
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (n_col <= size(work)) then
|
|
||||||
if ((4*n_col+n_col) <= size(work)) then
|
|
||||||
else
|
|
||||||
deallocate(aux)
|
|
||||||
endif
|
|
||||||
else
|
|
||||||
deallocate(ww,aux)
|
|
||||||
endif
|
|
||||||
|
|
||||||
call psb_erractionrestore(err_act)
|
|
||||||
return
|
|
||||||
|
|
||||||
9999 continue
|
|
||||||
call psb_erractionrestore(err_act)
|
|
||||||
if (err_act.eq.psb_act_abort_) then
|
|
||||||
call psb_error()
|
|
||||||
return
|
|
||||||
end if
|
|
||||||
return
|
|
||||||
|
|
||||||
end subroutine mld_dbjac_aply
|
|
||||||
|
|
@ -0,0 +1,297 @@
|
|||||||
|
!!$
|
||||||
|
!!$
|
||||||
|
!!$ MLD2P4
|
||||||
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
||||||
|
!!$ based on PSBLAS (Parallel Sparse BLAS v.2.0)
|
||||||
|
!!$
|
||||||
|
!!$ (C) Copyright 2007 Alfredo Buttari University of Rome Tor Vergata
|
||||||
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
||||||
|
!!$ Daniela di Serafino Second University of Naples
|
||||||
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
||||||
|
!!$
|
||||||
|
!!$ Redistribution and use in source and binary forms, with or without
|
||||||
|
!!$ modification, are permitted provided that the following conditions
|
||||||
|
!!$ are met:
|
||||||
|
!!$ 1. Redistributions of source code must retain the above copyright
|
||||||
|
!!$ notice, this list of conditions and the following disclaimer.
|
||||||
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
||||||
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
||||||
|
!!$ documentation and/or other materials provided with the distribution.
|
||||||
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
||||||
|
!!$ not be used to endorse or promote products derived from this
|
||||||
|
!!$ software without specific written permission.
|
||||||
|
!!$
|
||||||
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||||
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
||||||
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||||
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||||
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||||
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||||
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||||
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||||
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
!!$
|
||||||
|
!!$
|
||||||
|
! File mld_dsub_aply.f90
|
||||||
|
!
|
||||||
|
! Subroutine: mld_dsub_aply
|
||||||
|
! Version: real
|
||||||
|
!
|
||||||
|
! This routine computes
|
||||||
|
!
|
||||||
|
! Y = beta*Y + alpha*op(K^(-1))*X,
|
||||||
|
!
|
||||||
|
! where
|
||||||
|
! - K is a suitable matrix, as specified below,
|
||||||
|
! - op(K^(-1)) is K^(-1) or its transpose, according to the value of trans,
|
||||||
|
! - X and Y are vectors,
|
||||||
|
! - alpha and beta are scalars.
|
||||||
|
!
|
||||||
|
! Depending on K, alpha, beta (and on the communication descriptor desc_data
|
||||||
|
! - see the arguments below), the above computation may correspond to one of
|
||||||
|
! the following tasks:
|
||||||
|
!
|
||||||
|
! 1. Application of a block-Jacobi preconditioner associated to a matrix A
|
||||||
|
! distributed among the processes. Here K is the preconditioner, op(K^(-1))
|
||||||
|
! = K^(-1), alpha = 1 and beta = 0.
|
||||||
|
!
|
||||||
|
! 2. Application of block-Jacobi sweeps to compute an approximate solution of
|
||||||
|
! a linear system
|
||||||
|
! A*Y = X,
|
||||||
|
!
|
||||||
|
! distributed among the processes (note that a single block-Jacobi sweep,
|
||||||
|
! with null starting guess, corresponds to the application of a block-Jacobi
|
||||||
|
! preconditioner). Here K^(-1) denotes the iteration matrix of the
|
||||||
|
! block-Jacobi solver, op(K^(-1)) = K^(-1), alpha = 1 and beta = 0.
|
||||||
|
!
|
||||||
|
! 3. Solution, through the LU factorization, of a linear system
|
||||||
|
!
|
||||||
|
! A*Y = X,
|
||||||
|
!
|
||||||
|
! distributed among the processes. Here K = L*U = A, op(K^(-1)) = K^(-1),
|
||||||
|
! alpha = 1 and beta = 0.
|
||||||
|
!
|
||||||
|
! 4. (Approximate) solution, through the LU or incomplete LU factorization, of
|
||||||
|
! a linear system
|
||||||
|
! A*Y = X,
|
||||||
|
!
|
||||||
|
! replicated on the processes. Here K = L*U = A or K = L*U ~ A, op(K^(-1)) =
|
||||||
|
! K^(-1), alpha = 1 and beta = 0.
|
||||||
|
!
|
||||||
|
! The block-Jacobi preconditioner or solver and the L and U factors of the LU
|
||||||
|
! or ILU factorizations have been built by the routine mld_dbjac_bld and stored
|
||||||
|
! into the 'base preconditioner' data structure prec. See mld_dbjac_bld for more
|
||||||
|
! details.
|
||||||
|
!
|
||||||
|
! This routine is used by mld_dbaseprec_aply, to apply a 'base' block-Jacobi or
|
||||||
|
! Additive Schwarz (AS) preconditioner at any level of a multilevel preconditioner,
|
||||||
|
! or a block-Jacobi or LU or ILU solver at the coarsest level of a multilevel
|
||||||
|
! preconditioner.
|
||||||
|
!
|
||||||
|
! Inside mld_dbaseprec_aply, tasks 1, 3 and 4 may be selected if
|
||||||
|
! prec%iprcparm(smooth_sweeps_) = 1, while task 2 if prec%iprcparm(smooth_sweeps_)
|
||||||
|
! > 1. Furthermore, tasks 1, 2 and 3 may be performed if the matrix A is
|
||||||
|
! distributed among the processes (prec%iprcparm(mld_coarse_mat_) = mld_distr_mat_),
|
||||||
|
! while task 4 may be performed if A is replicated on the processes
|
||||||
|
! (prec%iprcparm(mld_coarse_mat_) = mld_repl_mat_). Note that the matrix A is
|
||||||
|
! distributed among the processes at each level of the multilevel preconditioner,
|
||||||
|
! except the coarsest one, where it may be either distributed or replicated on
|
||||||
|
! the processes. Furthermore, the tasks 2, 3 and 4 are performed only at the
|
||||||
|
! coarsest level. Note also that this routine manages implicitly the fact that
|
||||||
|
! the matrix is distributed or replicated, i.e. it does not make any explicit
|
||||||
|
! reference to the value of prec%iprcparm(mld_coarse_mat_).
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! Arguments:
|
||||||
|
!
|
||||||
|
! alpha - real(kind(0.d0)), input.
|
||||||
|
! The scalar alpha.
|
||||||
|
! prec - type(mld_dbaseprec_type), input.
|
||||||
|
! The 'base preconditioner' data structure containing the local
|
||||||
|
! part of the preconditioner or solver.
|
||||||
|
! x - real(kind(0.d0)), dimension(:), input.
|
||||||
|
! The local part of the vector X.
|
||||||
|
! beta - real(kind(0.d0)), input.
|
||||||
|
! The scalar beta.
|
||||||
|
! y - real(kind(0.d0)), dimension(:), input/output.
|
||||||
|
! The local part of the vector Y.
|
||||||
|
! desc_data - type(psb_desc_type), input.
|
||||||
|
! The communication descriptor associated to the matrix to be
|
||||||
|
! preconditioned or 'inverted'.
|
||||||
|
! trans - character(len=1), input.
|
||||||
|
! If trans='N','n' then op(K^(-1)) = K^(-1);
|
||||||
|
! if trans='T','t' then op(K^(-1)) = K^(-T) (transpose of K^(-1)).
|
||||||
|
! If prec%iprcparm(smooth_sweeps_) > 1, the value of trans provided
|
||||||
|
! in input is ignored.
|
||||||
|
! work - real(kind(0.d0)), dimension (:), target.
|
||||||
|
! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data).
|
||||||
|
! info - integer, output.
|
||||||
|
! Error code.
|
||||||
|
!
|
||||||
|
subroutine mld_dsub_aply(alpha,prec,x,beta,y,desc_data,trans,work,info)
|
||||||
|
|
||||||
|
use psb_base_mod
|
||||||
|
use mld_prec_mod, mld_protect_name => mld_dsub_aply
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
|
||||||
|
! Arguments
|
||||||
|
type(psb_desc_type), intent(in) :: desc_data
|
||||||
|
type(mld_dbaseprc_type), intent(in) :: prec
|
||||||
|
real(kind(0.d0)),intent(in) :: x(:)
|
||||||
|
real(kind(0.d0)),intent(inout) :: y(:)
|
||||||
|
real(kind(0.d0)),intent(in) :: alpha,beta
|
||||||
|
character(len=1),intent(in) :: trans
|
||||||
|
real(kind(0.d0)),target, intent(inout) :: work(:)
|
||||||
|
integer, intent(out) :: info
|
||||||
|
|
||||||
|
! Local variables
|
||||||
|
integer :: n_row,n_col
|
||||||
|
real(kind(1.d0)), pointer :: ww(:), aux(:), tx(:),ty(:)
|
||||||
|
integer :: ictxt,np,me,i, err_act
|
||||||
|
character(len=20) :: name
|
||||||
|
character :: trans_
|
||||||
|
|
||||||
|
name='mld_dsub_aply'
|
||||||
|
info = 0
|
||||||
|
call psb_erractionsave(err_act)
|
||||||
|
|
||||||
|
ictxt=psb_cd_get_context(desc_data)
|
||||||
|
call psb_info(ictxt, me, np)
|
||||||
|
|
||||||
|
trans_ = toupper(trans)
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
case('T','C')
|
||||||
|
case default
|
||||||
|
call psb_errpush(40,name)
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
|
||||||
|
n_row = psb_cd_get_local_rows(desc_data)
|
||||||
|
n_col = psb_cd_get_local_cols(desc_data)
|
||||||
|
|
||||||
|
if (n_col <= size(work)) then
|
||||||
|
ww => work(1:n_col)
|
||||||
|
if ((4*n_col+n_col) <= size(work)) then
|
||||||
|
aux => work(n_col+1:)
|
||||||
|
else
|
||||||
|
allocate(aux(4*n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/4*n_col,0,0,0,0/),&
|
||||||
|
& a_err='real(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
allocate(ww(n_col),aux(4*n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/5*n_col,0,0,0,0/),&
|
||||||
|
& a_err='real(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (prec%iprcparm(mld_smooth_sweeps_) == 1) then
|
||||||
|
|
||||||
|
call mld_sub_solve(alpha,prec,x,beta,y,desc_data,trans_,aux,info)
|
||||||
|
|
||||||
|
if (info /= 0) then
|
||||||
|
call psb_errpush(4001,name,a_err='Error in sub_aply Jacobi Sweeps = 1')
|
||||||
|
goto 9999
|
||||||
|
endif
|
||||||
|
|
||||||
|
else if (prec%iprcparm(mld_smooth_sweeps_) > 1) then
|
||||||
|
|
||||||
|
!
|
||||||
|
! TASK 2
|
||||||
|
!
|
||||||
|
! Apply prec%iprcparm(smooth_sweeps_) sweeps of a block-Jacobi solver
|
||||||
|
! to compute an approximate solution of a linear system.
|
||||||
|
!
|
||||||
|
! Note: trans is always 'N' here.
|
||||||
|
!
|
||||||
|
|
||||||
|
if (size(prec%av) < mld_ap_nd_) then
|
||||||
|
info = 4011
|
||||||
|
goto 9999
|
||||||
|
endif
|
||||||
|
|
||||||
|
allocate(tx(n_col),ty(n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/2*n_col,0,0,0,0/),&
|
||||||
|
& a_err='real(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
|
||||||
|
tx = dzero
|
||||||
|
ty = dzero
|
||||||
|
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
||||||
|
!
|
||||||
|
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
|
||||||
|
! block diagonal part and the remaining part of the local matrix
|
||||||
|
! and Y(j) is the approximate solution at sweep j.
|
||||||
|
!
|
||||||
|
ty(1:n_row) = x(1:n_row)
|
||||||
|
call psb_spmm(-done,prec%av(mld_ap_nd_),tx,done,ty,&
|
||||||
|
& prec%desc_data,info,work=aux,trans=trans_)
|
||||||
|
|
||||||
|
if (info /=0) exit
|
||||||
|
|
||||||
|
call mld_sub_solve(done,prec,ty,dzero,tx,desc_data,trans_,aux,info)
|
||||||
|
|
||||||
|
if (info /=0) exit
|
||||||
|
end do
|
||||||
|
|
||||||
|
if (info == 0) call psb_geaxpby(alpha,tx,beta,y,desc_data,info)
|
||||||
|
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4001
|
||||||
|
call psb_errpush(info,name,a_err='subsolve with Jacobi sweeps > 1')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
|
||||||
|
deallocate(tx,ty,stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4001
|
||||||
|
call psb_errpush(info,name,a_err='final cleanup with Jacobi sweeps > 1')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
|
||||||
|
else
|
||||||
|
|
||||||
|
info = 10
|
||||||
|
call psb_errpush(info,name,&
|
||||||
|
& i_err=(/2,prec%iprcparm(mld_smooth_sweeps_),0,0,0/))
|
||||||
|
goto 9999
|
||||||
|
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (n_col <= size(work)) then
|
||||||
|
if ((4*n_col+n_col) <= size(work)) then
|
||||||
|
else
|
||||||
|
deallocate(aux)
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
deallocate(ww,aux)
|
||||||
|
endif
|
||||||
|
|
||||||
|
call psb_erractionrestore(err_act)
|
||||||
|
return
|
||||||
|
|
||||||
|
9999 continue
|
||||||
|
call psb_erractionrestore(err_act)
|
||||||
|
if (err_act.eq.psb_act_abort_) then
|
||||||
|
call psb_error()
|
||||||
|
return
|
||||||
|
end if
|
||||||
|
return
|
||||||
|
|
||||||
|
end subroutine mld_dsub_aply
|
||||||
|
|
@ -0,0 +1,298 @@
|
|||||||
|
!!$
|
||||||
|
!!$
|
||||||
|
!!$ MLD2P4
|
||||||
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
||||||
|
!!$ based on PSBLAS (Parallel Sparse BLAS v.2.0)
|
||||||
|
!!$
|
||||||
|
!!$ (C) Copyright 2007 Alfredo Buttari University of Rome Tor Vergata
|
||||||
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
||||||
|
!!$ Daniela di Serafino Second University of Naples
|
||||||
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
||||||
|
!!$
|
||||||
|
!!$ Redistribution and use in source and binary forms, with or without
|
||||||
|
!!$ modification, are permitted provided that the following conditions
|
||||||
|
!!$ are met:
|
||||||
|
!!$ 1. Redistributions of source code must retain the above copyright
|
||||||
|
!!$ notice, this list of conditions and the following disclaimer.
|
||||||
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
||||||
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
||||||
|
!!$ documentation and/or other materials provided with the distribution.
|
||||||
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
||||||
|
!!$ not be used to endorse or promote products derived from this
|
||||||
|
!!$ software without specific written permission.
|
||||||
|
!!$
|
||||||
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||||
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
||||||
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||||
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||||
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||||
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||||
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||||
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||||
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
!!$
|
||||||
|
!!$
|
||||||
|
! File mld_dsub_solve.f90
|
||||||
|
!
|
||||||
|
! Subroutine: mld_dsub_solve
|
||||||
|
! Version: real
|
||||||
|
!
|
||||||
|
! This routine computes
|
||||||
|
!
|
||||||
|
! Y = beta*Y + alpha*op(K^(-1))*X,
|
||||||
|
!
|
||||||
|
! where
|
||||||
|
! - K is a factored matrix, as specified below,
|
||||||
|
! - op(K^(-1)) is K^(-1) or its transpose, according to the value of trans,
|
||||||
|
! - X and Y are vectors,
|
||||||
|
! - alpha and beta are scalars.
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! 1. Solution of a linear system with sparse factors LU generated by means
|
||||||
|
! of an incomplete factorization approximating
|
||||||
|
!
|
||||||
|
! A*Y = X,
|
||||||
|
! In this case the factors of A are either distributed (in which case
|
||||||
|
! they are also block-diagonal) or replicated.
|
||||||
|
!
|
||||||
|
! 2. Solution of a linear system with sparse factors LU generated by means
|
||||||
|
! of an complete factorization
|
||||||
|
!
|
||||||
|
! A*Y = X,
|
||||||
|
!
|
||||||
|
! computed with the aid of an auxiliary sparse package such as
|
||||||
|
! a. UMFPACK
|
||||||
|
! b. SuperLU
|
||||||
|
! c. SuperLU_Dist
|
||||||
|
! In cases a. and b. the matrix A and its factors are either distributed
|
||||||
|
! and block diagonal or replicated; in case c. the matrix A and its
|
||||||
|
! factors are distributed.
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! Arguments:
|
||||||
|
!
|
||||||
|
! alpha - real(kind(0.d0)), input.
|
||||||
|
! The scalar alpha.
|
||||||
|
! prec - type(mld_dbaseprec_type), input.
|
||||||
|
! The 'base preconditioner' data structure containing the local
|
||||||
|
! part of the preconditioner or solver.
|
||||||
|
! x - real(kind(0.d0)), dimension(:), input.
|
||||||
|
! The local part of the vector X.
|
||||||
|
! beta - real(kind(0.d0)), input.
|
||||||
|
! The scalar beta.
|
||||||
|
! y - real(kind(0.d0)), dimension(:), input/output.
|
||||||
|
! The local part of the vector Y.
|
||||||
|
! desc_data - type(psb_desc_type), input.
|
||||||
|
! The communication descriptor associated to the matrix to be
|
||||||
|
! preconditioned or 'inverted'.
|
||||||
|
! trans - character(len=1), input.
|
||||||
|
! If trans='N','n' then op(K^(-1)) = K^(-1);
|
||||||
|
! if trans='T','t' then op(K^(-1)) = K^(-T) (transpose of K^(-1)).
|
||||||
|
! If prec%iprcparm(smooth_sweeps_) > 1, the value of trans provided
|
||||||
|
! in input is ignored.
|
||||||
|
! work - real(kind(0.d0)), dimension (:), target.
|
||||||
|
! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data).
|
||||||
|
! info - integer, output.
|
||||||
|
! Error code.
|
||||||
|
!
|
||||||
|
subroutine mld_dsub_solve(alpha,prec,x,beta,y,desc_data,trans,work,info)
|
||||||
|
|
||||||
|
use psb_base_mod
|
||||||
|
use mld_prec_mod, mld_protect_name => mld_dsub_solve
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
|
||||||
|
! Arguments
|
||||||
|
type(psb_desc_type), intent(in) :: desc_data
|
||||||
|
type(mld_dbaseprc_type), intent(in) :: prec
|
||||||
|
real(kind(0.d0)),intent(in) :: x(:)
|
||||||
|
real(kind(0.d0)),intent(inout) :: y(:)
|
||||||
|
real(kind(0.d0)),intent(in) :: alpha,beta
|
||||||
|
character(len=1),intent(in) :: trans
|
||||||
|
real(kind(0.d0)),target, intent(inout) :: work(:)
|
||||||
|
integer, intent(out) :: info
|
||||||
|
|
||||||
|
! Local variables
|
||||||
|
integer :: n_row,n_col
|
||||||
|
real(kind(1.d0)), pointer :: ww(:), aux(:), tx(:),ty(:)
|
||||||
|
integer :: ictxt,np,me,i, err_act
|
||||||
|
character(len=20) :: name
|
||||||
|
character :: trans_
|
||||||
|
|
||||||
|
interface
|
||||||
|
subroutine mld_dumf_solve(flag,m,x,b,n,ptr,info)
|
||||||
|
integer, intent(in) :: flag,m,n,ptr
|
||||||
|
integer, intent(out) :: info
|
||||||
|
real(kind(1.d0)), intent(in) :: b(*)
|
||||||
|
real(kind(1.d0)), intent(inout) :: x(*)
|
||||||
|
end subroutine mld_dumf_solve
|
||||||
|
end interface
|
||||||
|
|
||||||
|
name='mld_dsub_solve'
|
||||||
|
info = 0
|
||||||
|
call psb_erractionsave(err_act)
|
||||||
|
|
||||||
|
ictxt=psb_cd_get_context(desc_data)
|
||||||
|
call psb_info(ictxt, me, np)
|
||||||
|
|
||||||
|
trans_ = toupper(trans)
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
case('T','C')
|
||||||
|
case default
|
||||||
|
call psb_errpush(40,name)
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
|
||||||
|
n_row = psb_cd_get_local_rows(desc_data)
|
||||||
|
n_col = psb_cd_get_local_cols(desc_data)
|
||||||
|
|
||||||
|
if (n_col <= size(work)) then
|
||||||
|
ww => work(1:n_col)
|
||||||
|
if ((4*n_col+n_col) <= size(work)) then
|
||||||
|
aux => work(n_col+1:)
|
||||||
|
else
|
||||||
|
allocate(aux(4*n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/4*n_col,0,0,0,0/),&
|
||||||
|
& a_err='real(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
allocate(ww(n_col),aux(4*n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/5*n_col,0,0,0,0/),&
|
||||||
|
& a_err='real(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
select case(prec%iprcparm(mld_sub_solve_))
|
||||||
|
case(mld_ilu_n_,mld_milu_n_,mld_ilu_t_)
|
||||||
|
!
|
||||||
|
! Apply a block-Jacobi preconditioner with ILU(k)/MILU(k)/ILU(k,t)
|
||||||
|
! factorization of the blocks (distributed matrix) or approximately
|
||||||
|
! solve a system through ILU(k)/MILU(k)/ILU(k,t) (replicated matrix).
|
||||||
|
!
|
||||||
|
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
|
||||||
|
call psb_spsm(done,prec%av(mld_l_pr_),x,dzero,ww,desc_data,info,&
|
||||||
|
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
||||||
|
if (info == 0) call psb_spsm(alpha,prec%av(mld_u_pr_),ww,beta,y,desc_data,info,&
|
||||||
|
& trans=trans_,unit='U',choice=psb_none_, work=aux)
|
||||||
|
|
||||||
|
case('T','C')
|
||||||
|
call psb_spsm(done,prec%av(mld_u_pr_),x,dzero,ww,desc_data,info,&
|
||||||
|
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
||||||
|
if (info == 0) call psb_spsm(alpha,prec%av(mld_l_pr_),ww,beta,y,desc_data,info,&
|
||||||
|
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid TRANS in ILU subsolve')
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
case(mld_slu_)
|
||||||
|
!
|
||||||
|
! Apply a block-Jacobi preconditioner with LU factorization of the
|
||||||
|
! blocks (distributed matrix) or approximately solve a local linear
|
||||||
|
! system through LU (replicated matrix). The SuperLU package is used
|
||||||
|
! to apply the LU factorization in both cases.
|
||||||
|
!
|
||||||
|
|
||||||
|
ww(1:n_row) = x(1:n_row)
|
||||||
|
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
call mld_dslu_solve(0,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
||||||
|
case('T','C')
|
||||||
|
call mld_dslu_solve(1,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid TRANS in SLU subsolve')
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
if (info ==0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
||||||
|
|
||||||
|
case(mld_sludist_)
|
||||||
|
!
|
||||||
|
! Solve a distributed linear system with the LU factorization.
|
||||||
|
! The SuperLU_DIST package is used.
|
||||||
|
!
|
||||||
|
|
||||||
|
ww(1:n_row) = x(1:n_row)
|
||||||
|
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
call mld_dsludist_solve(0,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
||||||
|
case('T','C')
|
||||||
|
call mld_dsludist_solve(1,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid TRANS in SLUDist subsolve')
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
if (info == 0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
||||||
|
|
||||||
|
case (mld_umf_)
|
||||||
|
!
|
||||||
|
! Apply a block-Jacobi preconditioner with LU factorization of the
|
||||||
|
! blocks (distributed matrix) or approximately solve a local linear
|
||||||
|
! system through LU (replicated matrix). The UMFPACK package is used
|
||||||
|
! to apply the LU factorization in both cases.
|
||||||
|
!
|
||||||
|
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
call mld_dumf_solve(0,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
||||||
|
case('T','C')
|
||||||
|
call mld_dumf_solve(1,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid TRANS in UMF subsolve')
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
if (info == 0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
||||||
|
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid mld_sub_solve_')
|
||||||
|
goto 9999
|
||||||
|
|
||||||
|
end select
|
||||||
|
|
||||||
|
if (info /= 0) then
|
||||||
|
call psb_errpush(4001,name,a_err='Error in subsolve')
|
||||||
|
goto 9999
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (n_col <= size(work)) then
|
||||||
|
if ((4*n_col+n_col) <= size(work)) then
|
||||||
|
else
|
||||||
|
deallocate(aux)
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
deallocate(ww,aux)
|
||||||
|
endif
|
||||||
|
|
||||||
|
call psb_erractionrestore(err_act)
|
||||||
|
return
|
||||||
|
|
||||||
|
9999 continue
|
||||||
|
|
||||||
|
call psb_erractionrestore(err_act)
|
||||||
|
if (err_act.eq.psb_act_abort_) then
|
||||||
|
call psb_error()
|
||||||
|
return
|
||||||
|
end if
|
||||||
|
return
|
||||||
|
|
||||||
|
end subroutine mld_dsub_solve
|
||||||
|
|
@ -1,599 +0,0 @@
|
|||||||
!!$
|
|
||||||
!!$
|
|
||||||
!!$ MLD2P4
|
|
||||||
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
||||||
!!$ based on PSBLAS (Parallel Sparse BLAS v.2.0)
|
|
||||||
!!$
|
|
||||||
!!$ (C) Copyright 2007 Alfredo Buttari University of Rome Tor Vergata
|
|
||||||
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
|
||||||
!!$ Daniela di Serafino Second University of Naples
|
|
||||||
!!$ Salvatore Filippone University of Rome Tor Vergata
|
|
||||||
!!$
|
|
||||||
!!$ Redistribution and use in source and binary forms, with or without
|
|
||||||
!!$ modification, are permitted provided that the following conditions
|
|
||||||
!!$ are met:
|
|
||||||
!!$ 1. Redistributions of source code must retain the above copyright
|
|
||||||
!!$ notice, this list of conditions and the following disclaimer.
|
|
||||||
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
|
||||||
!!$ notice, this list of conditions, and the following disclaimer in the
|
|
||||||
!!$ documentation and/or other materials provided with the distribution.
|
|
||||||
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
|
||||||
!!$ not be used to endorse or promote products derived from this
|
|
||||||
!!$ software without specific written permission.
|
|
||||||
!!$
|
|
||||||
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
||||||
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
||||||
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
||||||
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
||||||
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
||||||
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
||||||
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
||||||
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
||||||
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
||||||
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
||||||
!!$ POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
!!$
|
|
||||||
!!$
|
|
||||||
! File mld_zbjac_aply.f90
|
|
||||||
!
|
|
||||||
! Subroutine: mld_zbjac_aply
|
|
||||||
! Version: complex
|
|
||||||
!
|
|
||||||
! This routine computes
|
|
||||||
!
|
|
||||||
! Y = beta*Y + alpha*op(K^(-1))*X,
|
|
||||||
!
|
|
||||||
! where
|
|
||||||
! - K is a suitable matrix, as specified below,
|
|
||||||
! - op(K^(-1)) is K^(-1) or its transpose, according to the value of trans,
|
|
||||||
! - X and Y are vectors,
|
|
||||||
! - alpha and beta are scalars.
|
|
||||||
!
|
|
||||||
! Depending on K, alpha, beta (and on the communication descriptor desc_data
|
|
||||||
! - see the arguments below), the above computation may correspond to one of
|
|
||||||
! the following tasks:
|
|
||||||
!
|
|
||||||
! 1. Application of a block-Jacobi preconditioner associated to a matrix A
|
|
||||||
! distributed among the processes. Here K is the preconditioner, op(K^(-1))
|
|
||||||
! = K^(-1), alpha = 1 and beta = 0.
|
|
||||||
!
|
|
||||||
! 2. Application of block-Jacobi sweeps to compute an approximate solution of
|
|
||||||
! a linear system
|
|
||||||
! A*Y = X,
|
|
||||||
!
|
|
||||||
! distributed among the processes (note that a single block-Jacobi sweep,
|
|
||||||
! with null starting guess, corresponds to the application of a block-Jacobi
|
|
||||||
! preconditioner). Here K^(-1) denotes the iteration matrix of the
|
|
||||||
! block-Jacobi solver, op(K^(-1)) = K^(-1), alpha = 1 and beta = 0.
|
|
||||||
!
|
|
||||||
! 3. Solution, through the LU factorization, of a linear system
|
|
||||||
!
|
|
||||||
! A*Y = X,
|
|
||||||
!
|
|
||||||
! distributed among the processes. Here K = L*U = A, op(K^(-1)) = K^(-1),
|
|
||||||
! alpha = 1 and beta = 0.
|
|
||||||
!
|
|
||||||
! 4. (Approximate) solution, through the LU or incomplete LU factorization, of
|
|
||||||
! a linear system
|
|
||||||
! A*Y = X,
|
|
||||||
!
|
|
||||||
! replicated on the processes. Here K = L*U = A or K = L*U ~ A, op(K^(-1)) =
|
|
||||||
! K^(-1), alpha = 1 and beta = 0.
|
|
||||||
!
|
|
||||||
! The block-Jacobi preconditioner or solver and the L and U factors of the LU
|
|
||||||
! or ILU factorizations have been built by the routine mld_dbjac_bld and stored
|
|
||||||
! into the 'base preconditioner' data structure prec. See mld_dbjac_bld for more
|
|
||||||
! details.
|
|
||||||
!
|
|
||||||
! This routine is used by mld_dbaseprec_aply, to apply a 'base' block-Jacobi or
|
|
||||||
! Additive Schwarz (AS) preconditioner at any level of a multilevel preconditioner,
|
|
||||||
! or a block-Jacobi or LU or ILU solver at the coarsest level of a multilevel
|
|
||||||
! preconditioner.
|
|
||||||
!
|
|
||||||
! Inside mld_dbaseprec_aply, tasks 1, 3 and 4 may be selected if
|
|
||||||
! prec%iprcparm(smooth_sweeps_) = 1, while task 2 if prec%iprcparm(smooth_sweeps_)
|
|
||||||
! > 1. Furthermore, tasks 1, 2 and 3 may be performed if the matrix A is
|
|
||||||
! distributed among the processes (prec%iprcparm(mld_coarse_mat_) = mld_distr_mat_),
|
|
||||||
! while task 4 may be performed if A is replicated on the processes
|
|
||||||
! (prec%iprcparm(mld_coarse_mat_) = mld_repl_mat_). Note that the matrix A is
|
|
||||||
! distributed among the processes at each level of the multilevel preconditioner,
|
|
||||||
! except the coarsest one, where it may be either distributed or replicated on
|
|
||||||
! the processes. Furthermore, the tasks 2, 3 and 4 are performed only at the
|
|
||||||
! coarsest level. Note also that this routine manages implicitly the fact that
|
|
||||||
! the matrix is distributed or replicated, i.e. it does not make any explicit
|
|
||||||
! reference to the value of prec%iprcparm(mld_coarse_mat_).
|
|
||||||
!
|
|
||||||
!
|
|
||||||
! Arguments:
|
|
||||||
!
|
|
||||||
! alpha - complex(kind(0.d0)), input.
|
|
||||||
! The scalar alpha.
|
|
||||||
! prec - type(mld_zbaseprec_type), input.
|
|
||||||
! The 'base preconditioner' data structure containing the local
|
|
||||||
! part of the preconditioner or solver.
|
|
||||||
! x - complex(kind(0.d0)), dimension(:), input.
|
|
||||||
! The local part of the vector X.
|
|
||||||
! beta - complex(kind(0.d0)), input.
|
|
||||||
! The scalar beta.
|
|
||||||
! y - complex(kind(0.d0)), dimension(:), input/output.
|
|
||||||
! The local part of the vector Y.
|
|
||||||
! desc_data - type(psb_desc_type), input.
|
|
||||||
! The communication descriptor associated to the matrix to be
|
|
||||||
! preconditioned or 'inverted'.
|
|
||||||
! trans - character(len=1), input.
|
|
||||||
! If trans='N','n' then op(K^(-1)) = K^(-1);
|
|
||||||
! if trans='T','t' then op(K^(-1)) = K^(-T) (transpose of K^(-1)).
|
|
||||||
! If prec%iprcparm(smooth_sweeps_) > 1, the value of trans provided
|
|
||||||
! in input is ignored.
|
|
||||||
! work - complex(kind(0.d0)), dimension (:), target.
|
|
||||||
! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data).
|
|
||||||
! info - integer, output.
|
|
||||||
! Error code.
|
|
||||||
!
|
|
||||||
subroutine mld_zbjac_aply(alpha,prec,x,beta,y,desc_data,trans,work,info)
|
|
||||||
|
|
||||||
use psb_base_mod
|
|
||||||
use mld_prec_mod, mld_protect_name => mld_zbjac_aply
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
! Arguments
|
|
||||||
type(psb_desc_type), intent(in) :: desc_data
|
|
||||||
type(mld_zbaseprc_type), intent(in) :: prec
|
|
||||||
complex(kind(0.d0)),intent(in) :: x(:)
|
|
||||||
complex(kind(0.d0)),intent(inout) :: y(:)
|
|
||||||
complex(kind(0.d0)),intent(in) :: alpha,beta
|
|
||||||
character(len=1), intent(in) :: trans
|
|
||||||
complex(kind(0.d0)),target, intent(inout) :: work(:)
|
|
||||||
integer, intent(out) :: info
|
|
||||||
|
|
||||||
! Local variables
|
|
||||||
integer :: n_row,n_col
|
|
||||||
complex(kind(1.d0)), pointer :: ww(:), aux(:), tx(:),ty(:)
|
|
||||||
integer :: ictxt,np,me,i, err_act
|
|
||||||
character(len=20) :: name
|
|
||||||
character :: trans_
|
|
||||||
|
|
||||||
interface
|
|
||||||
subroutine mld_zumf_solve(flag,m,x,b,n,ptr,info)
|
|
||||||
integer, intent(in) :: flag,m,n,ptr
|
|
||||||
integer, intent(out) :: info
|
|
||||||
complex(kind(1.d0)), intent(in) :: b(*)
|
|
||||||
complex(kind(1.d0)), intent(inout) :: x(*)
|
|
||||||
end subroutine mld_zumf_solve
|
|
||||||
end interface
|
|
||||||
|
|
||||||
name='mld_zbjac_aply'
|
|
||||||
info = 0
|
|
||||||
call psb_erractionsave(err_act)
|
|
||||||
|
|
||||||
ictxt=psb_cd_get_context(desc_data)
|
|
||||||
call psb_info(ictxt, me, np)
|
|
||||||
|
|
||||||
trans_ = toupper(trans)
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
case('T','C')
|
|
||||||
case default
|
|
||||||
call psb_errpush(40,name)
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
|
|
||||||
n_row = psb_cd_get_local_rows(desc_data)
|
|
||||||
n_col = psb_cd_get_local_cols(desc_data)
|
|
||||||
|
|
||||||
if (n_col <= size(work)) then
|
|
||||||
ww => work(1:n_col)
|
|
||||||
if ((4*n_col+n_col) <= size(work)) then
|
|
||||||
aux => work(n_col+1:)
|
|
||||||
else
|
|
||||||
allocate(aux(4*n_col),stat=info)
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4025
|
|
||||||
call psb_errpush(info,name,i_err=(/4*n_col,0,0,0,0/),&
|
|
||||||
& a_err='complex(kind(1.d0))')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
endif
|
|
||||||
else
|
|
||||||
allocate(ww(n_col),aux(4*n_col),stat=info)
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4025
|
|
||||||
call psb_errpush(info,name,i_err=(/5*n_col,0,0,0,0/),&
|
|
||||||
& a_err='complex(kind(1.d0))')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (prec%iprcparm(mld_smooth_sweeps_) == 1) then
|
|
||||||
!
|
|
||||||
! TASKS 1, 3 and 4
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(prec%iprcparm(mld_sub_solve_))
|
|
||||||
case(mld_ilu_n_,mld_milu_n_,mld_ilu_t_)
|
|
||||||
!
|
|
||||||
! Apply a block-Jacobi preconditioner with ILU(k)/MILU(k)/ILU(k,t)
|
|
||||||
! factorization of the blocks (distributed matrix) or approximately
|
|
||||||
! solve a system through ILU(k)/MILU(k)/ILU(k,t) (replicated matrix).
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
|
|
||||||
call psb_spsm(zone,prec%av(mld_l_pr_),x,zzero,ww,desc_data,info,&
|
|
||||||
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
|
||||||
if (info == 0) call psb_spsm(alpha,prec%av(mld_u_pr_),ww,beta,y,desc_data,info,&
|
|
||||||
& trans=trans_,unit='U',choice=psb_none_, work=aux)
|
|
||||||
|
|
||||||
case('T','C')
|
|
||||||
call psb_spsm(zone,prec%av(mld_u_pr_),x,zzero,ww,desc_data,info,&
|
|
||||||
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_, work=aux)
|
|
||||||
if(info ==0) call psb_spsm(alpha,prec%av(mld_l_pr_),ww,beta,y,desc_data,info,&
|
|
||||||
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in ILU subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
case(mld_slu_)
|
|
||||||
!
|
|
||||||
! Apply a block-Jacobi preconditioner with LU factorization of the
|
|
||||||
! blocks (distributed matrix) or approximately solve a local linear
|
|
||||||
! system through LU (replicated matrix). The SuperLU package is used
|
|
||||||
! to apply the LU factorization in both cases.
|
|
||||||
!
|
|
||||||
|
|
||||||
ww(1:n_row) = x(1:n_row)
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
call mld_zslu_solve(0,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
case('T')
|
|
||||||
call mld_zslu_solve(1,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
case('C')
|
|
||||||
call mld_zslu_solve(2,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in SLU subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
if (info ==0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
|
||||||
|
|
||||||
case(mld_sludist_)
|
|
||||||
!
|
|
||||||
! Solve a distributed linear system with the LU factorization.
|
|
||||||
! The SuperLU_DIST package is used.
|
|
||||||
!
|
|
||||||
|
|
||||||
ww(1:n_row) = x(1:n_row)
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
call mld_zsludist_solve(0,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
|
||||||
case('T')
|
|
||||||
call mld_zsludist_solve(1,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
|
||||||
case('C')
|
|
||||||
call mld_zsludist_solve(2,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in SLUDist subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
if (info == 0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
|
||||||
|
|
||||||
case (mld_umf_)
|
|
||||||
!
|
|
||||||
! Apply a block-Jacobi preconditioner with LU factorization of the
|
|
||||||
! blocks (distributed matrix) or approximately solve a local linear
|
|
||||||
! system through LU (replicated matrix). The UMFPACK package is used
|
|
||||||
! to apply the LU factorization in both cases.
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
call mld_zumf_solve(0,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
case('T')
|
|
||||||
call mld_zumf_solve(1,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
case('C')
|
|
||||||
call mld_zumf_solve(2,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in UMF subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
if (info == 0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid mld_sub_solve_')
|
|
||||||
goto 9999
|
|
||||||
|
|
||||||
end select
|
|
||||||
if (info /= 0) then
|
|
||||||
call psb_errpush(4001,name,a_err='Error in subsolve Jacobi Sweeps = 1')
|
|
||||||
goto 9999
|
|
||||||
endif
|
|
||||||
|
|
||||||
else if (prec%iprcparm(mld_smooth_sweeps_) > 1) then
|
|
||||||
|
|
||||||
!
|
|
||||||
! TASK 2
|
|
||||||
!
|
|
||||||
! Apply prec%iprcparm(smooth_sweeps_) sweeps of a block-Jacobi solver
|
|
||||||
! to compute an approximate solution of a linear system.
|
|
||||||
!
|
|
||||||
! Note: trans is always 'N' here.
|
|
||||||
!
|
|
||||||
|
|
||||||
if (size(prec%av) < mld_ap_nd_) then
|
|
||||||
info = 4011
|
|
||||||
goto 9999
|
|
||||||
endif
|
|
||||||
|
|
||||||
allocate(tx(n_col),ty(n_col),stat=info)
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4025
|
|
||||||
call psb_errpush(info,name,i_err=(/2*n_col,0,0,0,0/),&
|
|
||||||
& a_err='complex(kind(1.d0))')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
|
|
||||||
select case(prec%iprcparm(mld_sub_solve_))
|
|
||||||
case(mld_ilu_n_,mld_milu_n_,mld_ilu_t_)
|
|
||||||
!
|
|
||||||
! Use ILU(k)/MILU(k)/ILU(k,t) on the blocks.
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
tx = zzero
|
|
||||||
ty = zzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
|
||||||
& prec%desc_data,info,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
call psb_spsm(zone,prec%av(mld_l_pr_),ty,zzero,ww,&
|
|
||||||
& prec%desc_data,info,&
|
|
||||||
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
call psb_spsm(zone,prec%av(mld_u_pr_),ww,zzero,tx,&
|
|
||||||
& prec%desc_data,info,&
|
|
||||||
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
end do
|
|
||||||
|
|
||||||
case('T','C')
|
|
||||||
tx = zzero
|
|
||||||
ty = zzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
|
||||||
& prec%desc_data,info,work=aux,trans=trans_)
|
|
||||||
if (info /=0) exit
|
|
||||||
call psb_spsm(zone,prec%av(mld_u_pr_),ty,zzero,ww,&
|
|
||||||
& prec%desc_data,info,&
|
|
||||||
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
call psb_spsm(zone,prec%av(mld_l_pr_),ww,zzero,tx,&
|
|
||||||
& prec%desc_data,info,&
|
|
||||||
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
|
||||||
if (info /=0) exit
|
|
||||||
end do
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in ILU subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
|
|
||||||
case(mld_sludist_)
|
|
||||||
!
|
|
||||||
! Wrong choice: SuperLU_DIST
|
|
||||||
!
|
|
||||||
info = 4001
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid SuperLU_DIST with Jacobi sweeps >1')
|
|
||||||
goto 9999
|
|
||||||
|
|
||||||
case(mld_slu_)
|
|
||||||
!
|
|
||||||
! Use the LU factorization from SuperLU.
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
tx = zzero
|
|
||||||
ty = zzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
|
||||||
& prec%desc_data,info,work=aux)
|
|
||||||
if (info /= 0) exit
|
|
||||||
|
|
||||||
call mld_zslu_solve(0,n_row,1,ty,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
if (info /= 0) exit
|
|
||||||
tx(1:n_row) = ty(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case('T')
|
|
||||||
tx = zzero
|
|
||||||
ty = zzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
|
||||||
& prec%desc_data,info,work=aux,trans=trans_)
|
|
||||||
if (info /= 0) exit
|
|
||||||
|
|
||||||
call mld_zslu_solve(1,n_row,1,ty,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
if (info /= 0) exit
|
|
||||||
tx(1:n_row) = ty(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case('C')
|
|
||||||
tx = zzero
|
|
||||||
ty = zzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
|
||||||
& prec%desc_data,info,work=aux,trans=trans_)
|
|
||||||
if (info /= 0) exit
|
|
||||||
|
|
||||||
call mld_zslu_solve(2,n_row,1,ty,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
|
||||||
if (info /= 0) exit
|
|
||||||
tx(1:n_row) = ty(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in SLU subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
case(mld_umf_)
|
|
||||||
!
|
|
||||||
! Use the LU factorization from UMFPACK.
|
|
||||||
!
|
|
||||||
|
|
||||||
select case(trans_)
|
|
||||||
case('N')
|
|
||||||
tx = zzero
|
|
||||||
ty = zzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
|
||||||
& prec%desc_data,info,work=aux)
|
|
||||||
if (info /= 0) exit
|
|
||||||
|
|
||||||
call mld_zumf_solve(0,n_row,ww,ty,n_row,&
|
|
||||||
& prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
if (info /= 0) exit
|
|
||||||
tx(1:n_row) = ww(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case('T')
|
|
||||||
tx = zzero
|
|
||||||
ty = zzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
|
||||||
& prec%desc_data,info,work=aux,trans=trans_)
|
|
||||||
if (info /= 0) exit
|
|
||||||
|
|
||||||
call mld_zumf_solve(1,n_row,ww,ty,n_row,&
|
|
||||||
& prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
if (info /= 0) exit
|
|
||||||
tx(1:n_row) = ww(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case('C')
|
|
||||||
tx = zzero
|
|
||||||
ty = zzero
|
|
||||||
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
|
||||||
!
|
|
||||||
! Compute Y(k+1) = D^(-1)*(X-ND*Y(k)), where D and ND are the
|
|
||||||
! block diagonal part and the remaining part of the local matrix
|
|
||||||
! and Y(j) is the approximate solution at sweep j.
|
|
||||||
!
|
|
||||||
ty(1:n_row) = x(1:n_row)
|
|
||||||
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
|
||||||
& prec%desc_data,info,work=aux,trans=trans_)
|
|
||||||
if (info /= 0) exit
|
|
||||||
|
|
||||||
call mld_zumf_solve(2,n_row,ww,ty,n_row,&
|
|
||||||
& prec%iprcparm(mld_umf_numptr_),info)
|
|
||||||
if (info /= 0) exit
|
|
||||||
tx(1:n_row) = ww(1:n_row)
|
|
||||||
end do
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid TRANS in UMF subsolve')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
|
|
||||||
case default
|
|
||||||
call psb_errpush(4001,name,a_err='Invalid mld_sub_solve_')
|
|
||||||
goto 9999
|
|
||||||
end select
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4001
|
|
||||||
call psb_errpush(info,name,a_err='subsolve with Jacobi sweeps > 1')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
|
|
||||||
!
|
|
||||||
! Put the result into the output vector Y.
|
|
||||||
!
|
|
||||||
call psb_geaxpby(alpha,tx,beta,y,desc_data,info)
|
|
||||||
deallocate(tx,ty,stat=info)
|
|
||||||
if (info /= 0) then
|
|
||||||
info=4001
|
|
||||||
call psb_errpush(info,name,a_err='final cleanup with Jacobi sweeps > 1')
|
|
||||||
goto 9999
|
|
||||||
end if
|
|
||||||
|
|
||||||
else
|
|
||||||
|
|
||||||
info = 10
|
|
||||||
call psb_errpush(info,name,&
|
|
||||||
& i_err=(/2,prec%iprcparm(mld_smooth_sweeps_),0,0,0/))
|
|
||||||
goto 9999
|
|
||||||
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (n_col <= size(work)) then
|
|
||||||
if ((4*n_col+n_col) <= size(work)) then
|
|
||||||
else
|
|
||||||
deallocate(aux)
|
|
||||||
endif
|
|
||||||
else
|
|
||||||
deallocate(ww,aux)
|
|
||||||
endif
|
|
||||||
|
|
||||||
call psb_erractionrestore(err_act)
|
|
||||||
return
|
|
||||||
|
|
||||||
9999 continue
|
|
||||||
call psb_erractionrestore(err_act)
|
|
||||||
if (err_act.eq.psb_act_abort_) then
|
|
||||||
call psb_error()
|
|
||||||
return
|
|
||||||
end if
|
|
||||||
return
|
|
||||||
|
|
||||||
end subroutine mld_zbjac_aply
|
|
||||||
|
|
@ -0,0 +1,298 @@
|
|||||||
|
!!$
|
||||||
|
!!$
|
||||||
|
!!$ MLD2P4
|
||||||
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
||||||
|
!!$ based on PSBLAS (Parallel Sparse BLAS v.2.0)
|
||||||
|
!!$
|
||||||
|
!!$ (C) Copyright 2007 Alfredo Buttari University of Rome Tor Vergata
|
||||||
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
||||||
|
!!$ Daniela di Serafino Second University of Naples
|
||||||
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
||||||
|
!!$
|
||||||
|
!!$ Redistribution and use in source and binary forms, with or without
|
||||||
|
!!$ modification, are permitted provided that the following conditions
|
||||||
|
!!$ are met:
|
||||||
|
!!$ 1. Redistributions of source code must retain the above copyright
|
||||||
|
!!$ notice, this list of conditions and the following disclaimer.
|
||||||
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
||||||
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
||||||
|
!!$ documentation and/or other materials provided with the distribution.
|
||||||
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
||||||
|
!!$ not be used to endorse or promote products derived from this
|
||||||
|
!!$ software without specific written permission.
|
||||||
|
!!$
|
||||||
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||||
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
||||||
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||||
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||||
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||||
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||||
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||||
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||||
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
!!$
|
||||||
|
!!$
|
||||||
|
! File mld_zsub_aply.f90
|
||||||
|
!
|
||||||
|
! Subroutine: mld_zsub_aply
|
||||||
|
! Version: complex
|
||||||
|
!
|
||||||
|
! This routine computes
|
||||||
|
!
|
||||||
|
! Y = beta*Y + alpha*op(K^(-1))*X,
|
||||||
|
!
|
||||||
|
! where
|
||||||
|
! - K is a suitable matrix, as specified below,
|
||||||
|
! - op(K^(-1)) is K^(-1) or its transpose, according to the value of trans,
|
||||||
|
! - X and Y are vectors,
|
||||||
|
! - alpha and beta are scalars.
|
||||||
|
!
|
||||||
|
! Depending on K, alpha, beta (and on the communication descriptor desc_data
|
||||||
|
! - see the arguments below), the above computation may correspond to one of
|
||||||
|
! the following tasks:
|
||||||
|
!
|
||||||
|
! 1. Application of a block-Jacobi preconditioner associated to a matrix A
|
||||||
|
! distributed among the processes. Here K is the preconditioner, op(K^(-1))
|
||||||
|
! = K^(-1), alpha = 1 and beta = 0.
|
||||||
|
!
|
||||||
|
! 2. Application of block-Jacobi sweeps to compute an approximate solution of
|
||||||
|
! a linear system
|
||||||
|
! A*Y = X,
|
||||||
|
!
|
||||||
|
! distributed among the processes (note that a single block-Jacobi sweep,
|
||||||
|
! with null starting guess, corresponds to the application of a block-Jacobi
|
||||||
|
! preconditioner). Here K^(-1) denotes the iteration matrix of the
|
||||||
|
! block-Jacobi solver, op(K^(-1)) = K^(-1), alpha = 1 and beta = 0.
|
||||||
|
!
|
||||||
|
! 3. Solution, through the LU factorization, of a linear system
|
||||||
|
!
|
||||||
|
! A*Y = X,
|
||||||
|
!
|
||||||
|
! distributed among the processes. Here K = L*U = A, op(K^(-1)) = K^(-1),
|
||||||
|
! alpha = 1 and beta = 0.
|
||||||
|
!
|
||||||
|
! 4. (Approximate) solution, through the LU or incomplete LU factorization, of
|
||||||
|
! a linear system
|
||||||
|
! A*Y = X,
|
||||||
|
!
|
||||||
|
! replicated on the processes. Here K = L*U = A or K = L*U ~ A, op(K^(-1)) =
|
||||||
|
! K^(-1), alpha = 1 and beta = 0.
|
||||||
|
!
|
||||||
|
! The block-Jacobi preconditioner or solver and the L and U factors of the LU
|
||||||
|
! or ILU factorizations have been built by the routine mld_dbjac_bld and stored
|
||||||
|
! into the 'base preconditioner' data structure prec. See mld_dbjac_bld for more
|
||||||
|
! details.
|
||||||
|
!
|
||||||
|
! This routine is used by mld_dbaseprec_aply, to apply a 'base' block-Jacobi or
|
||||||
|
! Additive Schwarz (AS) preconditioner at any level of a multilevel preconditioner,
|
||||||
|
! or a block-Jacobi or LU or ILU solver at the coarsest level of a multilevel
|
||||||
|
! preconditioner.
|
||||||
|
!
|
||||||
|
! Inside mld_dbaseprec_aply, tasks 1, 3 and 4 may be selected if
|
||||||
|
! prec%iprcparm(smooth_sweeps_) = 1, while task 2 if prec%iprcparm(smooth_sweeps_)
|
||||||
|
! > 1. Furthermore, tasks 1, 2 and 3 may be performed if the matrix A is
|
||||||
|
! distributed among the processes (prec%iprcparm(mld_coarse_mat_) = mld_distr_mat_),
|
||||||
|
! while task 4 may be performed if A is replicated on the processes
|
||||||
|
! (prec%iprcparm(mld_coarse_mat_) = mld_repl_mat_). Note that the matrix A is
|
||||||
|
! distributed among the processes at each level of the multilevel preconditioner,
|
||||||
|
! except the coarsest one, where it may be either distributed or replicated on
|
||||||
|
! the processes. Furthermore, the tasks 2, 3 and 4 are performed only at the
|
||||||
|
! coarsest level. Note also that this routine manages implicitly the fact that
|
||||||
|
! the matrix is distributed or replicated, i.e. it does not make any explicit
|
||||||
|
! reference to the value of prec%iprcparm(mld_coarse_mat_).
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! Arguments:
|
||||||
|
!
|
||||||
|
! alpha - complex(kind(0.d0)), input.
|
||||||
|
! The scalar alpha.
|
||||||
|
! prec - type(mld_zbaseprec_type), input.
|
||||||
|
! The 'base preconditioner' data structure containing the local
|
||||||
|
! part of the preconditioner or solver.
|
||||||
|
! x - complex(kind(0.d0)), dimension(:), input.
|
||||||
|
! The local part of the vector X.
|
||||||
|
! beta - complex(kind(0.d0)), input.
|
||||||
|
! The scalar beta.
|
||||||
|
! y - complex(kind(0.d0)), dimension(:), input/output.
|
||||||
|
! The local part of the vector Y.
|
||||||
|
! desc_data - type(psb_desc_type), input.
|
||||||
|
! The communication descriptor associated to the matrix to be
|
||||||
|
! preconditioned or 'inverted'.
|
||||||
|
! trans - character(len=1), input.
|
||||||
|
! If trans='N','n' then op(K^(-1)) = K^(-1);
|
||||||
|
! if trans='T','t' then op(K^(-1)) = K^(-T) (transpose of K^(-1)).
|
||||||
|
! if trans='C','c' then op(K^(-1)) = K^(-C) (transpose conjugate of K^(-1)).
|
||||||
|
! If prec%iprcparm(smooth_sweeps_) > 1, the value of trans provided
|
||||||
|
! in input is ignored.
|
||||||
|
! work - complex(kind(0.d0)), dimension (:), target.
|
||||||
|
! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data).
|
||||||
|
! info - integer, output.
|
||||||
|
! Error code.
|
||||||
|
!
|
||||||
|
subroutine mld_zsub_aply(alpha,prec,x,beta,y,desc_data,trans,work,info)
|
||||||
|
|
||||||
|
use psb_base_mod
|
||||||
|
use mld_prec_mod, mld_protect_name => mld_zsub_aply
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
|
||||||
|
! Arguments
|
||||||
|
type(psb_desc_type), intent(in) :: desc_data
|
||||||
|
type(mld_zbaseprc_type), intent(in) :: prec
|
||||||
|
complex(kind(0.d0)),intent(in) :: x(:)
|
||||||
|
complex(kind(0.d0)),intent(inout) :: y(:)
|
||||||
|
complex(kind(0.d0)),intent(in) :: alpha,beta
|
||||||
|
character(len=1), intent(in) :: trans
|
||||||
|
complex(kind(0.d0)),target, intent(inout) :: work(:)
|
||||||
|
integer, intent(out) :: info
|
||||||
|
|
||||||
|
! Local variables
|
||||||
|
integer :: n_row,n_col
|
||||||
|
complex(kind(1.d0)), pointer :: ww(:), aux(:), tx(:),ty(:)
|
||||||
|
integer :: ictxt,np,me,i, err_act
|
||||||
|
character(len=20) :: name
|
||||||
|
character :: trans_
|
||||||
|
|
||||||
|
name='mld_zsub_aply'
|
||||||
|
info = 0
|
||||||
|
call psb_erractionsave(err_act)
|
||||||
|
|
||||||
|
ictxt=psb_cd_get_context(desc_data)
|
||||||
|
call psb_info(ictxt, me, np)
|
||||||
|
|
||||||
|
trans_ = toupper(trans)
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
case('T','C')
|
||||||
|
case default
|
||||||
|
call psb_errpush(40,name)
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
|
||||||
|
n_row = psb_cd_get_local_rows(desc_data)
|
||||||
|
n_col = psb_cd_get_local_cols(desc_data)
|
||||||
|
|
||||||
|
if (n_col <= size(work)) then
|
||||||
|
ww => work(1:n_col)
|
||||||
|
if ((4*n_col+n_col) <= size(work)) then
|
||||||
|
aux => work(n_col+1:)
|
||||||
|
else
|
||||||
|
allocate(aux(4*n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/4*n_col,0,0,0,0/),&
|
||||||
|
& a_err='complex(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
allocate(ww(n_col),aux(4*n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/5*n_col,0,0,0,0/),&
|
||||||
|
& a_err='complex(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (prec%iprcparm(mld_smooth_sweeps_) == 1) then
|
||||||
|
|
||||||
|
call mld_sub_solve(alpha,prec,x,beta,y,desc_data,trans_,aux,info)
|
||||||
|
|
||||||
|
if (info /= 0) then
|
||||||
|
call psb_errpush(4001,name,a_err='Error in sub_aply Jacobi Sweeps = 1')
|
||||||
|
goto 9999
|
||||||
|
endif
|
||||||
|
|
||||||
|
else if (prec%iprcparm(mld_smooth_sweeps_) > 1) then
|
||||||
|
|
||||||
|
!
|
||||||
|
! TASK 2
|
||||||
|
!
|
||||||
|
! Apply prec%iprcparm(smooth_sweeps_) sweeps of a block-Jacobi solver
|
||||||
|
! to compute an approximate solution of a linear system.
|
||||||
|
!
|
||||||
|
! Note: trans is always 'N' here.
|
||||||
|
!
|
||||||
|
|
||||||
|
if (size(prec%av) < mld_ap_nd_) then
|
||||||
|
info = 4011
|
||||||
|
goto 9999
|
||||||
|
endif
|
||||||
|
|
||||||
|
allocate(tx(n_col),ty(n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/2*n_col,0,0,0,0/),&
|
||||||
|
& a_err='complex(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
|
||||||
|
tx = zzero
|
||||||
|
ty = zzero
|
||||||
|
do i=1, prec%iprcparm(mld_smooth_sweeps_)
|
||||||
|
!
|
||||||
|
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
|
||||||
|
! block diagonal part and the remaining part of the local matrix
|
||||||
|
! and Y(j) is the approximate solution at sweep j.
|
||||||
|
!
|
||||||
|
ty(1:n_row) = x(1:n_row)
|
||||||
|
call psb_spmm(-zone,prec%av(mld_ap_nd_),tx,zone,ty,&
|
||||||
|
& prec%desc_data,info,work=aux,trans=trans_)
|
||||||
|
|
||||||
|
if (info /=0) exit
|
||||||
|
|
||||||
|
call mld_sub_solve(zone,prec,ty,zzero,tx,desc_data,trans_,aux,info)
|
||||||
|
|
||||||
|
if (info /=0) exit
|
||||||
|
end do
|
||||||
|
|
||||||
|
if (info == 0) call psb_geaxpby(alpha,tx,beta,y,desc_data,info)
|
||||||
|
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4001
|
||||||
|
call psb_errpush(info,name,a_err='subsolve with Jacobi sweeps > 1')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
|
||||||
|
deallocate(tx,ty,stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4001
|
||||||
|
call psb_errpush(info,name,a_err='final cleanup with Jacobi sweeps > 1')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
|
||||||
|
else
|
||||||
|
|
||||||
|
info = 10
|
||||||
|
call psb_errpush(info,name,&
|
||||||
|
& i_err=(/2,prec%iprcparm(mld_smooth_sweeps_),0,0,0/))
|
||||||
|
goto 9999
|
||||||
|
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (n_col <= size(work)) then
|
||||||
|
if ((4*n_col+n_col) <= size(work)) then
|
||||||
|
else
|
||||||
|
deallocate(aux)
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
deallocate(ww,aux)
|
||||||
|
endif
|
||||||
|
|
||||||
|
call psb_erractionrestore(err_act)
|
||||||
|
return
|
||||||
|
|
||||||
|
9999 continue
|
||||||
|
call psb_erractionrestore(err_act)
|
||||||
|
if (err_act.eq.psb_act_abort_) then
|
||||||
|
call psb_error()
|
||||||
|
return
|
||||||
|
end if
|
||||||
|
return
|
||||||
|
|
||||||
|
end subroutine mld_zsub_aply
|
||||||
|
|
@ -0,0 +1,311 @@
|
|||||||
|
!!$
|
||||||
|
!!$
|
||||||
|
!!$ MLD2P4
|
||||||
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
||||||
|
!!$ based on PSBLAS (Parallel Sparse BLAS v.2.0)
|
||||||
|
!!$
|
||||||
|
!!$ (C) Copyright 2007 Alfredo Buttari University of Rome Tor Vergata
|
||||||
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
||||||
|
!!$ Daniela di Serafino Second University of Naples
|
||||||
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
||||||
|
!!$
|
||||||
|
!!$ Redistribution and use in source and binary forms, with or without
|
||||||
|
!!$ modification, are permitted provided that the following conditions
|
||||||
|
!!$ are met:
|
||||||
|
!!$ 1. Redistributions of source code must retain the above copyright
|
||||||
|
!!$ notice, this list of conditions and the following disclaimer.
|
||||||
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
||||||
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
||||||
|
!!$ documentation and/or other materials provided with the distribution.
|
||||||
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
||||||
|
!!$ not be used to endorse or promote products derived from this
|
||||||
|
!!$ software without specific written permission.
|
||||||
|
!!$
|
||||||
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||||
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
||||||
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||||
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||||
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||||
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||||
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||||
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||||
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
!!$
|
||||||
|
!!$
|
||||||
|
! File mld_zsub_solve.f90
|
||||||
|
!
|
||||||
|
! Subroutine: mld_zsub_solve
|
||||||
|
! Version: complex
|
||||||
|
!
|
||||||
|
! This routine computes
|
||||||
|
!
|
||||||
|
! Y = beta*Y + alpha*op(K^(-1))*X,
|
||||||
|
!
|
||||||
|
! where
|
||||||
|
! - K is a factored matrix, as specified below,
|
||||||
|
! - op(K^(-1)) is K^(-1) or its transpose, according to the value of trans,
|
||||||
|
! - X and Y are vectors,
|
||||||
|
! - alpha and beta are scalars.
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! 1. Solution of a linear system with sparse factors LU generated by means
|
||||||
|
! of an incomplete factorization approximating
|
||||||
|
!
|
||||||
|
! A*Y = X,
|
||||||
|
! In this case the factors of A are either distributed (in which case
|
||||||
|
! they are also block-diagonal) or replicated.
|
||||||
|
!
|
||||||
|
! 2. Solution of a linear system with sparse factors LU generated by means
|
||||||
|
! of an complete factorization
|
||||||
|
!
|
||||||
|
! A*Y = X,
|
||||||
|
!
|
||||||
|
! computed with the aid of an auxiliary sparse package such as
|
||||||
|
! a. UMFPACK
|
||||||
|
! b. SuperLU
|
||||||
|
! c. SuperLU_Dist
|
||||||
|
! In cases a. and b. the matrix A and its factors are either distributed
|
||||||
|
! and block diagonal or replicated; in case c. the matrix A and its
|
||||||
|
! factors are distributed.
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! Arguments:
|
||||||
|
!
|
||||||
|
! alpha - complex(kind(0.d0)), input.
|
||||||
|
! The scalar alpha.
|
||||||
|
! prec - type(mld_zbaseprec_type), input.
|
||||||
|
! The 'base preconditioner' data structure containing the local
|
||||||
|
! part of the preconditioner or solver.
|
||||||
|
! x - complex(kind(0.d0)), dimension(:), input.
|
||||||
|
! The local part of the vector X.
|
||||||
|
! beta - complex(kind(0.d0)), input.
|
||||||
|
! The scalar beta.
|
||||||
|
! y - complex(kind(0.d0)), dimension(:), input/output.
|
||||||
|
! The local part of the vector Y.
|
||||||
|
! desc_data - type(psb_desc_type), input.
|
||||||
|
! The communication descriptor associated to the matrix to be
|
||||||
|
! preconditioned or 'inverted'.
|
||||||
|
! trans - character(len=1), input.
|
||||||
|
! If trans='N','n' then op(K^(-1)) = K^(-1);
|
||||||
|
! if trans='T','t' then op(K^(-1)) = K^(-T) (transpose of K^(-1)).
|
||||||
|
! if trans='C','c' then op(K^(-1)) = K^(-C) (transpose conjugate of K^(-1)).
|
||||||
|
! If prec%iprcparm(smooth_sweeps_) > 1, the value of trans provided
|
||||||
|
! in input is ignored.
|
||||||
|
! work - complex(kind(0.d0)), dimension (:), target.
|
||||||
|
! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data).
|
||||||
|
! info - integer, output.
|
||||||
|
! Error code.
|
||||||
|
!
|
||||||
|
subroutine mld_zsub_solve(alpha,prec,x,beta,y,desc_data,trans,work,info)
|
||||||
|
|
||||||
|
use psb_base_mod
|
||||||
|
use mld_prec_mod, mld_protect_name => mld_zsub_solve
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
|
||||||
|
! Arguments
|
||||||
|
type(psb_desc_type), intent(in) :: desc_data
|
||||||
|
type(mld_zbaseprc_type), intent(in) :: prec
|
||||||
|
complex(kind(0.d0)),intent(in) :: x(:)
|
||||||
|
complex(kind(0.d0)),intent(inout) :: y(:)
|
||||||
|
complex(kind(0.d0)),intent(in) :: alpha,beta
|
||||||
|
character(len=1), intent(in) :: trans
|
||||||
|
complex(kind(0.d0)),target, intent(inout) :: work(:)
|
||||||
|
integer, intent(out) :: info
|
||||||
|
|
||||||
|
! Local variables
|
||||||
|
integer :: n_row,n_col
|
||||||
|
complex(kind(1.d0)), pointer :: ww(:), aux(:), tx(:),ty(:)
|
||||||
|
integer :: ictxt,np,me,i, err_act
|
||||||
|
character(len=20) :: name
|
||||||
|
character :: trans_
|
||||||
|
|
||||||
|
interface
|
||||||
|
subroutine mld_zumf_solve(flag,m,x,b,n,ptr,info)
|
||||||
|
integer, intent(in) :: flag,m,n,ptr
|
||||||
|
integer, intent(out) :: info
|
||||||
|
complex(kind(1.d0)), intent(in) :: b(*)
|
||||||
|
complex(kind(1.d0)), intent(inout) :: x(*)
|
||||||
|
end subroutine mld_zumf_solve
|
||||||
|
end interface
|
||||||
|
|
||||||
|
name='mld_zsub_solve'
|
||||||
|
info = 0
|
||||||
|
call psb_erractionsave(err_act)
|
||||||
|
|
||||||
|
ictxt=psb_cd_get_context(desc_data)
|
||||||
|
call psb_info(ictxt, me, np)
|
||||||
|
|
||||||
|
trans_ = toupper(trans)
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
case('T','C')
|
||||||
|
case default
|
||||||
|
call psb_errpush(40,name)
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
|
||||||
|
n_row = psb_cd_get_local_rows(desc_data)
|
||||||
|
n_col = psb_cd_get_local_cols(desc_data)
|
||||||
|
|
||||||
|
if (n_col <= size(work)) then
|
||||||
|
ww => work(1:n_col)
|
||||||
|
if ((4*n_col+n_col) <= size(work)) then
|
||||||
|
aux => work(n_col+1:)
|
||||||
|
else
|
||||||
|
allocate(aux(4*n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/4*n_col,0,0,0,0/),&
|
||||||
|
& a_err='complex(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
allocate(ww(n_col),aux(4*n_col),stat=info)
|
||||||
|
if (info /= 0) then
|
||||||
|
info=4025
|
||||||
|
call psb_errpush(info,name,i_err=(/5*n_col,0,0,0,0/),&
|
||||||
|
& a_err='complex(kind(1.d0))')
|
||||||
|
goto 9999
|
||||||
|
end if
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
select case(prec%iprcparm(mld_sub_solve_))
|
||||||
|
case(mld_ilu_n_,mld_milu_n_,mld_ilu_t_)
|
||||||
|
!
|
||||||
|
! Apply a block-Jacobi preconditioner with ILU(k)/MILU(k)/ILU(k,t)
|
||||||
|
! factorization of the blocks (distributed matrix) or approximately
|
||||||
|
! solve a system through ILU(k)/MILU(k)/ILU(k,t) (replicated matrix).
|
||||||
|
!
|
||||||
|
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
|
||||||
|
call psb_spsm(zone,prec%av(mld_l_pr_),x,zzero,ww,desc_data,info,&
|
||||||
|
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_,work=aux)
|
||||||
|
if (info == 0) call psb_spsm(alpha,prec%av(mld_u_pr_),ww,beta,y,desc_data,info,&
|
||||||
|
& trans=trans_,unit='U',choice=psb_none_, work=aux)
|
||||||
|
|
||||||
|
case('T')
|
||||||
|
call psb_spsm(zone,prec%av(mld_u_pr_),x,zzero,ww,desc_data,info,&
|
||||||
|
& trans=trans_,unit='L',diag=prec%d,choice=psb_none_, work=aux)
|
||||||
|
if(info ==0) call psb_spsm(alpha,prec%av(mld_l_pr_),ww,beta,y,desc_data,info,&
|
||||||
|
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
||||||
|
|
||||||
|
case('C')
|
||||||
|
call psb_spsm(zone,prec%av(mld_u_pr_),x,zzero,ww,desc_data,info,&
|
||||||
|
& trans=trans_,unit='L',diag=conjg(prec%d),choice=psb_none_, work=aux)
|
||||||
|
if(info ==0) call psb_spsm(alpha,prec%av(mld_l_pr_),ww,beta,y,desc_data,info,&
|
||||||
|
& trans=trans_,unit='U',choice=psb_none_,work=aux)
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid TRANS in ILU subsolve')
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
case(mld_slu_)
|
||||||
|
!
|
||||||
|
! Apply a block-Jacobi preconditioner with LU factorization of the
|
||||||
|
! blocks (distributed matrix) or approximately solve a local linear
|
||||||
|
! system through LU (replicated matrix). The SuperLU package is used
|
||||||
|
! to apply the LU factorization in both cases.
|
||||||
|
!
|
||||||
|
|
||||||
|
ww(1:n_row) = x(1:n_row)
|
||||||
|
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
call mld_zslu_solve(0,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
||||||
|
case('T')
|
||||||
|
call mld_zslu_solve(1,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
||||||
|
case('C')
|
||||||
|
call mld_zslu_solve(2,n_row,1,ww,n_row,prec%iprcparm(mld_slu_ptr_),info)
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid TRANS in SLU subsolve')
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
if (info ==0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
||||||
|
|
||||||
|
case(mld_sludist_)
|
||||||
|
!
|
||||||
|
! Solve a distributed linear system with the LU factorization.
|
||||||
|
! The SuperLU_DIST package is used.
|
||||||
|
!
|
||||||
|
|
||||||
|
ww(1:n_row) = x(1:n_row)
|
||||||
|
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
call mld_zsludist_solve(0,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
||||||
|
case('T')
|
||||||
|
call mld_zsludist_solve(1,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
||||||
|
case('C')
|
||||||
|
call mld_zsludist_solve(2,n_row,1,ww,n_row,prec%iprcparm(mld_slud_ptr_),info)
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid TRANS in SLUDist subsolve')
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
if (info == 0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
||||||
|
|
||||||
|
case (mld_umf_)
|
||||||
|
!
|
||||||
|
! Apply a block-Jacobi preconditioner with LU factorization of the
|
||||||
|
! blocks (distributed matrix) or approximately solve a local linear
|
||||||
|
! system through LU (replicated matrix). The UMFPACK package is used
|
||||||
|
! to apply the LU factorization in both cases.
|
||||||
|
!
|
||||||
|
|
||||||
|
select case(trans_)
|
||||||
|
case('N')
|
||||||
|
call mld_zumf_solve(0,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
||||||
|
case('T')
|
||||||
|
call mld_zumf_solve(1,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
||||||
|
case('C')
|
||||||
|
call mld_zumf_solve(2,n_row,ww,x,n_row,prec%iprcparm(mld_umf_numptr_),info)
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid TRANS in UMF subsolve')
|
||||||
|
goto 9999
|
||||||
|
end select
|
||||||
|
|
||||||
|
if (info == 0) call psb_geaxpby(alpha,ww,beta,y,desc_data,info)
|
||||||
|
|
||||||
|
case default
|
||||||
|
call psb_errpush(4001,name,a_err='Invalid mld_sub_solve_')
|
||||||
|
goto 9999
|
||||||
|
|
||||||
|
end select
|
||||||
|
|
||||||
|
if (info /= 0) then
|
||||||
|
call psb_errpush(4001,name,a_err='Error in subsolve ')
|
||||||
|
goto 9999
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (n_col <= size(work)) then
|
||||||
|
if ((4*n_col+n_col) <= size(work)) then
|
||||||
|
else
|
||||||
|
deallocate(aux)
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
deallocate(ww,aux)
|
||||||
|
endif
|
||||||
|
|
||||||
|
call psb_erractionrestore(err_act)
|
||||||
|
return
|
||||||
|
|
||||||
|
9999 continue
|
||||||
|
|
||||||
|
call psb_erractionrestore(err_act)
|
||||||
|
if (err_act.eq.psb_act_abort_) then
|
||||||
|
call psb_error()
|
||||||
|
return
|
||||||
|
end if
|
||||||
|
return
|
||||||
|
|
||||||
|
end subroutine mld_zsub_solve
|
||||||
|
|
Loading…
Reference in New Issue