Fixup the documentation.

stopcriterion
Salvatore Filippone 7 years ago
parent 8ee76a1a82
commit 4b43164668

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.4 KiB

After

Width:  |  Height:  |  Size: 2.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 233 B

After

Width:  |  Height:  |  Size: 234 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 408 B

After

Width:  |  Height:  |  Size: 404 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 191 B

After

Width:  |  Height:  |  Size: 196 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 242 B

After

Width:  |  Height:  |  Size: 233 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 766 B

After

Width:  |  Height:  |  Size: 781 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 280 B

After

Width:  |  Height:  |  Size: 278 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 532 B

After

Width:  |  Height:  |  Size: 531 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 509 B

After

Width:  |  Height:  |  Size: 510 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 280 B

After

Width:  |  Height:  |  Size: 278 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 268 B

After

Width:  |  Height:  |  Size: 265 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 351 B

After

Width:  |  Height:  |  Size: 350 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 172 B

After

Width:  |  Height:  |  Size: 173 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 217 B

After

Width:  |  Height:  |  Size: 216 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.7 KiB

After

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 373 B

After

Width:  |  Height:  |  Size: 365 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 218 B

After

Width:  |  Height:  |  Size: 217 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 236 B

After

Width:  |  Height:  |  Size: 240 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 296 B

After

Width:  |  Height:  |  Size: 292 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 403 B

After

Width:  |  Height:  |  Size: 405 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 303 B

After

Width:  |  Height:  |  Size: 295 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 355 B

After

Width:  |  Height:  |  Size: 347 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 204 B

After

Width:  |  Height:  |  Size: 203 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 B

After

Width:  |  Height:  |  Size: 179 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 403 B

After

Width:  |  Height:  |  Size: 390 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 511 B

After

Width:  |  Height:  |  Size: 511 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.5 KiB

After

Width:  |  Height:  |  Size: 1.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 243 B

After

Width:  |  Height:  |  Size: 246 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 476 B

After

Width:  |  Height:  |  Size: 475 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 482 B

After

Width:  |  Height:  |  Size: 483 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 250 B

After

Width:  |  Height:  |  Size: 248 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 761 B

After

Width:  |  Height:  |  Size: 760 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 705 B

After

Width:  |  Height:  |  Size: 689 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 259 B

After

Width:  |  Height:  |  Size: 257 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 245 B

After

Width:  |  Height:  |  Size: 242 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 559 B

After

Width:  |  Height:  |  Size: 538 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.4 KiB

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 233 B

After

Width:  |  Height:  |  Size: 230 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 473 B

After

Width:  |  Height:  |  Size: 480 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 235 B

After

Width:  |  Height:  |  Size: 235 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 506 B

After

Width:  |  Height:  |  Size: 502 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 377 B

After

Width:  |  Height:  |  Size: 378 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 294 B

After

Width:  |  Height:  |  Size: 289 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 629 B

After

Width:  |  Height:  |  Size: 643 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 257 B

After

Width:  |  Height:  |  Size: 256 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 283 B

After

Width:  |  Height:  |  Size: 292 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 276 B

After

Width:  |  Height:  |  Size: 269 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 550 B

After

Width:  |  Height:  |  Size: 573 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 228 B

After

Width:  |  Height:  |  Size: 227 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 257 B

After

Width:  |  Height:  |  Size: 255 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 540 B

After

Width:  |  Height:  |  Size: 527 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 542 B

After

Width:  |  Height:  |  Size: 533 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 378 B

After

Width:  |  Height:  |  Size: 374 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 KiB

After

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 525 B

After

Width:  |  Height:  |  Size: 537 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 274 B

After

Width:  |  Height:  |  Size: 273 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 389 B

After

Width:  |  Height:  |  Size: 389 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 286 B

After

Width:  |  Height:  |  Size: 283 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 283 B

After

Width:  |  Height:  |  Size: 282 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 271 B

After

Width:  |  Height:  |  Size: 266 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 550 B

After

Width:  |  Height:  |  Size: 547 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 413 B

After

Width:  |  Height:  |  Size: 415 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 242 B

After

Width:  |  Height:  |  Size: 239 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 290 B

After

Width:  |  Height:  |  Size: 299 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 448 B

After

Width:  |  Height:  |  Size: 458 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 KiB

After

Width:  |  Height:  |  Size: 1.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 587 B

After

Width:  |  Height:  |  Size: 605 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 619 B

After

Width:  |  Height:  |  Size: 622 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 B

After

Width:  |  Height:  |  Size: 180 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 211 B

After

Width:  |  Height:  |  Size: 203 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 202 B

After

Width:  |  Height:  |  Size: 201 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 250 B

After

Width:  |  Height:  |  Size: 249 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 447 B

After

Width:  |  Height:  |  Size: 442 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 200 B

After

Width:  |  Height:  |  Size: 192 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 197 B

After

Width:  |  Height:  |  Size: 199 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 316 B

After

Width:  |  Height:  |  Size: 309 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 259 B

After

Width:  |  Height:  |  Size: 272 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 329 B

After

Width:  |  Height:  |  Size: 321 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 207 B

After

Width:  |  Height:  |  Size: 209 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 206 B

After

Width:  |  Height:  |  Size: 206 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 270 B

After

Width:  |  Height:  |  Size: 272 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 255 B

After

Width:  |  Height:  |  Size: 254 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 176 B

After

Width:  |  Height:  |  Size: 166 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 582 B

After

Width:  |  Height:  |  Size: 574 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 224 B

After

Width:  |  Height:  |  Size: 248 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 195 B

After

Width:  |  Height:  |  Size: 188 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 211 B

After

Width:  |  Height:  |  Size: 209 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 258 B

After

Width:  |  Height:  |  Size: 253 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 518 B

After

Width:  |  Height:  |  Size: 506 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 549 B

After

Width:  |  Height:  |  Size: 547 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 306 B

After

Width:  |  Height:  |  Size: 300 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 546 B

After

Width:  |  Height:  |  Size: 558 B

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) --> <!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML> <HTML>
<HEAD> <HEAD>
<TITLE>userhtml</TITLE> <TITLE>userhtml</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document"> <META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global"> <META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2"> <META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css"> <LINK REL="STYLESHEET" HREF="userhtml.css">
@ -69,17 +69,15 @@ based on PSBLAS</BIG></SPAN>
<BR> <BR>
<BR> <BR>
<BR> <BR>
Software version: 2.1 Software version: 2.2
<BR> <BR>
July 31, 2017 July 31, 2018
<BR> <BR>
</BIG></BIG></BIG> </BIG></BIG></BIG>
<P> <P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> <BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> </BIG></BIG></BIG>
</BIG></BIG></BIG>
<P> <P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG></BIG> <BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG></BIG>
<BR><HR> <BR><HR>

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) --> <!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML> <HTML>
<HEAD> <HEAD>
<TITLE>Abstract</TITLE> <TITLE>Abstract</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document"> <META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global"> <META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2"> <META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css"> <LINK REL="STYLESHEET" HREF="userhtml.css">

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) --> <!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML> <HTML>
<HEAD> <HEAD>
<TITLE>Bug reporting</TITLE> <TITLE>Bug reporting</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document"> <META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global"> <META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2"> <META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css"> <LINK REL="STYLESHEET" HREF="userhtml.css">

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) --> <!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML> <HTML>
<HEAD> <HEAD>
<TITLE>Example and test programs</TITLE> <TITLE>Example and test programs</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document"> <META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global"> <META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2"> <META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css"> <LINK REL="STYLESHEET" HREF="userhtml.css">

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) --> <!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML> <HTML>
<HEAD> <HEAD>
<TITLE>Multigrid Background</TITLE> <TITLE>Multigrid Background</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document"> <META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global"> <META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2"> <META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css"> <LINK REL="STYLESHEET" HREF="userhtml.css">
@ -88,19 +88,19 @@ are considered. The second approach performs a fully automatic coarsening and en
interplay between fine and coarse level by suitably choosing the coarse space and interplay between fine and coarse level by suitably choosing the coarse space and
the coarse-to-fine interpolation (see, e.g., [<A the coarse-to-fine interpolation (see, e.g., [<A
HREF="node36.html#Briggs2000">3</A>,<A HREF="node36.html#Briggs2000">3</A>,<A
HREF="node36.html#Stuben_01">23</A>,<A HREF="node36.html#Stuben_01">24</A>,<A
HREF="node36.html#dd2_96">21</A>] for details.) HREF="node36.html#dd2_96">22</A>] for details.)
</BIG></BIG></BIG> </BIG></BIG></BIG>
<P> <P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">MLD2P4 uses a pure algebraic approach, based on the smoothed <BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">MLD2P4 uses a pure algebraic approach, based on the smoothed
aggregation algorithm [<A aggregation algorithm [<A
HREF="node36.html#BREZINA_VANEK">2</A>,<A HREF="node36.html#BREZINA_VANEK">2</A>,<A
HREF="node36.html#VANEK_MANDEL_BREZINA">25</A>], HREF="node36.html#VANEK_MANDEL_BREZINA">26</A>],
for building the sequence of coarse matrices and transfer operators, for building the sequence of coarse matrices and transfer operators,
starting from the original one. starting from the original one.
A decoupled version of this algorithm is implemented, where the smoothed A decoupled version of this algorithm is implemented, where the smoothed
aggregation is applied locally to each submatrix [<A aggregation is applied locally to each submatrix [<A
HREF="node36.html#TUMINARO_TONG">24</A>]. HREF="node36.html#TUMINARO_TONG">25</A>].
A brief description of the AMG preconditioners implemented in MLD2P4 is given in A brief description of the AMG preconditioners implemented in MLD2P4 is given in
Sections&nbsp;<A HREF="node13.html#sec:multilevel">4.1</A>-<A HREF="node15.html#sec:smoothers">4.3</A>. For further details the reader Sections&nbsp;<A HREF="node13.html#sec:multilevel">4.1</A>-<A HREF="node15.html#sec:smoothers">4.3</A>. For further details the reader
is referred to [<A is referred to [<A

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) --> <!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML> <HTML>
<HEAD> <HEAD>
<TITLE>AMG preconditioners</TITLE> <TITLE>AMG preconditioners</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document"> <META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global"> <META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2"> <META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css"> <LINK REL="STYLESHEET" HREF="userhtml.css">
@ -67,7 +67,7 @@ Ax=b,
<A NAME="eq:system"></A> <A NAME="eq:system"></A>
<TABLE WIDTH="100%" ALIGN="CENTER"> <TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:system"></A><IMG <TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:system"></A><IMG
WIDTH="58" HEIGHT="30" BORDER="0" WIDTH="57" HEIGHT="30" BORDER="0"
SRC="img2.png" SRC="img2.png"
ALT="\begin{displaymath} ALT="\begin{displaymath}
Ax=b, Ax=b,
@ -80,7 +80,7 @@ where <!-- MATH
$A=(a_{ij}) \in \mathbb{R}^{n \times n}$ $A=(a_{ij}) \in \mathbb{R}^{n \times n}$
--> -->
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="137" HEIGHT="38" ALIGN="MIDDLE" BORDER="0" WIDTH="137" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img5.png" SRC="img5.png"
ALT="$A=(a_{ij}) \in \mathbb{R}^{n \times n}$"></SPAN> is a nonsingular sparse matrix; ALT="$A=(a_{ij}) \in \mathbb{R}^{n \times n}$"></SPAN> is a nonsingular sparse matrix;
for ease of presentation we assume <SPAN CLASS="MATH"><IMG for ease of presentation we assume <SPAN CLASS="MATH"><IMG
@ -98,7 +98,7 @@ pattern.
$\Omega = \{1, 2, \ldots, n\}$ $\Omega = \{1, 2, \ldots, n\}$
--> -->
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="132" HEIGHT="36" ALIGN="MIDDLE" BORDER="0" WIDTH="131" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img6.png" SRC="img6.png"
ALT="$\Omega = \{1, 2, \ldots, n\}$"></SPAN>. ALT="$\Omega = \{1, 2, \ldots, n\}$"></SPAN>.
Any algebraic multilevel preconditioners implemented in MLD2P4 generates Any algebraic multilevel preconditioners implemented in MLD2P4 generates
@ -116,7 +116,8 @@ a hierarchy of index spaces and a corresponding hierarchy of matrices,
<IMG <IMG
WIDTH="398" HEIGHT="30" BORDER="0" WIDTH="398" HEIGHT="30" BORDER="0"
SRC="img7.png" SRC="img7.png"
ALT="\begin{displaymath}\Omega^1 \equiv \Omega \supset \Omega^2 \supset \ldots \supset \Omega^{nlev}, \quad A^1 \equiv A, A^2, \ldots, A^{nlev}, \end{displaymath}"> ALT="\begin{displaymath}\Omega^1 \equiv \Omega \supset \Omega^2 \supset \ldots \supset \Omega^{nlev},
\quad A^1 \equiv A, A^2, \ldots, A^{nlev}, \end{displaymath}">
</DIV> </DIV>
<BR CLEAR="ALL"> <BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> <P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
@ -132,28 +133,28 @@ A vector space <!-- MATH
$\mathbb{R}^{n_{k}}$ $\mathbb{R}^{n_{k}}$
--> -->
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="33" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" WIDTH="33" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img8.png" SRC="img8.png"
ALT="$\mathbb{R}^{n_{k}}$"></SPAN> is associated with <SPAN CLASS="MATH"><IMG ALT="$\mathbb{R}^{n_{k}}$"></SPAN> is associated with <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png" SRC="img9.png"
ALT="$\Omega^k$"></SPAN>, ALT="$\Omega^k$"></SPAN>,
where <SPAN CLASS="MATH"><IMG where <SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img10.png" SRC="img10.png"
ALT="$n_k$"></SPAN> is the size of <SPAN CLASS="MATH"><IMG ALT="$n_k$"></SPAN> is the size of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png" SRC="img9.png"
ALT="$\Omega^k$"></SPAN>. ALT="$\Omega^k$"></SPAN>.
For all <SPAN CLASS="MATH"><IMG For all <SPAN CLASS="MATH"><IMG
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img11.png" SRC="img11.png"
ALT="$k &lt; nlev$"></SPAN>, a restriction operator and a prolongation one are built, ALT="$k &lt; nlev$"></SPAN>, a restriction operator and a prolongation one are built,
which connect two levels <SPAN CLASS="MATH"><IMG which connect two levels <SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" WIDTH="14" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img12.png" SRC="img12.png"
ALT="$k$"></SPAN> and <SPAN CLASS="MATH"><IMG ALT="$k$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img13.png" SRC="img13.png"
ALT="$k+1$"></SPAN>: ALT="$k+1$"></SPAN>:
</BIG></BIG></BIG> </BIG></BIG></BIG>
@ -167,14 +168,17 @@ P^k \in \mathbb{R}^{n_k \times n_{k+1}}, \quad
--> -->
<IMG <IMG
WIDTH="254" HEIGHT="30" BORDER="0" WIDTH="255" HEIGHT="30" BORDER="0"
SRC="img14.png" SRC="img14.png"
ALT="\begin{displaymath} P^k \in \mathbb{R}^{n_k \times n_{k+1}}, \quad R^k \in \mathbb{R}^{n_{k+1}\times n_k}; \end{displaymath}"> ALT="\begin{displaymath}
P^k \in \mathbb{R}^{n_k \times n_{k+1}}, \quad
R^k \in \mathbb{R}^{n_{k+1}\times n_k};
\end{displaymath}">
</DIV> </DIV>
<BR CLEAR="ALL"> <BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> <P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
the matrix <SPAN CLASS="MATH"><IMG the matrix <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img15.png" SRC="img15.png"
ALT="$A^{k+1}$"></SPAN> is computed by using the previous operators according ALT="$A^{k+1}$"></SPAN> is computed by using the previous operators according
to the Galerkin approach, i.e., to the Galerkin approach, i.e.,
@ -188,9 +192,11 @@ A^{k+1}=R^kA^kP^k.
--> -->
<IMG <IMG
WIDTH="131" HEIGHT="27" BORDER="0" WIDTH="131" HEIGHT="28" BORDER="0"
SRC="img16.png" SRC="img16.png"
ALT="\begin{displaymath} A^{k+1}=R^kA^kP^k. \end{displaymath}"> ALT="\begin{displaymath}
A^{k+1}=R^kA^kP^k.
\end{displaymath}">
</DIV> </DIV>
<BR CLEAR="ALL"> <BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> <P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
@ -199,10 +205,10 @@ In the current implementation of MLD2P4 we have <SPAN CLASS="MATH"><IMG
SRC="img17.png" SRC="img17.png"
ALT="$R^k=(P^k)^T$"></SPAN> ALT="$R^k=(P^k)^T$"></SPAN>
A smoother with iteration matrix <SPAN CLASS="MATH"><IMG A smoother with iteration matrix <SPAN CLASS="MATH"><IMG
WIDTH="32" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="31" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img18.png" SRC="img18.png"
ALT="$M^k$"></SPAN> is set up at each level <SPAN CLASS="MATH"><IMG ALT="$M^k$"></SPAN> is set up at each level <SPAN CLASS="MATH"><IMG
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img11.png" SRC="img11.png"
ALT="$k &lt; nlev$"></SPAN>, and a solver ALT="$k &lt; nlev$"></SPAN>, and a solver
is set up at the coarsest level, so that they are ready for application is set up at the coarsest level, so that they are ready for application
@ -211,7 +217,7 @@ is set up at the coarsest level, so that they are ready for application
SRC="img19.png" SRC="img19.png"
ALT="$LU$"></SPAN> factorization means computing ALT="$LU$"></SPAN> factorization means computing
and storing the <SPAN CLASS="MATH"><IMG and storing the <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img20.png" SRC="img20.png"
ALT="$L$"></SPAN> and <SPAN CLASS="MATH"><IMG ALT="$L$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" WIDTH="18" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
@ -251,8 +257,15 @@ end
<IMG <IMG
WIDTH="333" HEIGHT="336" ALIGN="BOTTOM" BORDER="0" WIDTH="333" HEIGHT="336" ALIGN="BOTTOM" BORDER="0"
SRC="img22.png" SRC="img22.png"
ALT="\framebox{ \begin{minipage}{.85\textwidth} \begin{tabbing} \quad \=\quad \=\quad... ALT="\framebox{
...mm] \&gt;endif [1mm] \&gt;return $u^k$ [1mm] end \end{tabbing} \end{minipage} }"> \begin{minipage}{.85\textwidth}
\begin{tabbing}
\quad \=\quad \=\quad...
...[1mm]
\&gt;endif [1mm]
\&gt;return $u^k$ [1mm]
end
\end{tabbing}\end{minipage}}">
</DIV></TD></TR> </DIV></TD></TR>
</TABLE> </TABLE>
@ -263,14 +276,14 @@ end
to obtain different multilevel preconditioners; to obtain different multilevel preconditioners;
this is done in the application phase, i.e., in the computation of a vector this is done in the application phase, i.e., in the computation of a vector
of type <SPAN CLASS="MATH"><IMG of type <SPAN CLASS="MATH"><IMG
WIDTH="82" HEIGHT="21" ALIGN="BOTTOM" BORDER="0" WIDTH="81" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png" SRC="img23.png"
ALT="$w=B^{-1}v$"></SPAN>, where <SPAN CLASS="MATH"><IMG ALT="$w=B^{-1}v$"></SPAN>, where <SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img24.png" SRC="img24.png"
ALT="$B$"></SPAN> denotes the preconditioner, usually within an iteration ALT="$B$"></SPAN> denotes the preconditioner, usually within an iteration
of a Krylov solver [<A of a Krylov solver [<A
HREF="node36.html#Saad_book">20</A>]. An example of such a combination, known as HREF="node36.html#Saad_book">21</A>]. An example of such a combination, known as
V-cycle, is given in Figure&nbsp;<A HREF="#fig:application_alg">1</A>. In this case, a single iteration V-cycle, is given in Figure&nbsp;<A HREF="#fig:application_alg">1</A>. In this case, a single iteration
of the same smoother is used before and after the the recursive call to the V-cycle (i.e., of the same smoother is used before and after the the recursive call to the V-cycle (i.e.,
in the pre-smoothing and post-smoothing phases); however, different choices can be in the pre-smoothing and post-smoothing phases); however, different choices can be
@ -278,7 +291,7 @@ performed. Other cycles can be defined; in MLD2P4, we implemented the standard V
and W-cycle&nbsp;[<A and W-cycle&nbsp;[<A
HREF="node36.html#Briggs2000">3</A>], and a version of the K-cycle described HREF="node36.html#Briggs2000">3</A>], and a version of the K-cycle described
in&nbsp;[<A in&nbsp;[<A
HREF="node36.html#Notay2008">19</A>]. HREF="node36.html#Notay2008">20</A>].
</BIG></BIG></BIG> </BIG></BIG></BIG>
<P> <P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG> <BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG>

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) --> <!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML> <HTML>
<HEAD> <HEAD>
<TITLE>Smoothed Aggregation</TITLE> <TITLE>Smoothed Aggregation</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document"> <META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global"> <META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2"> <META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css"> <LINK REL="STYLESHEET" HREF="userhtml.css">
@ -54,27 +54,27 @@ Smoothed Aggregation
</H2><BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG> </H2><BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG>
<P> <P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">In order to define the prolongator <SPAN CLASS="MATH"><IMG <BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">In order to define the prolongator <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png" SRC="img25.png"
ALT="$P^k$"></SPAN>, used to compute ALT="$P^k$"></SPAN>, used to compute
the coarse-level matrix <SPAN CLASS="MATH"><IMG the coarse-level matrix <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img15.png" SRC="img15.png"
ALT="$A^{k+1}$"></SPAN>, MLD2P4 uses the smoothed aggregation ALT="$A^{k+1}$"></SPAN>, MLD2P4 uses the smoothed aggregation
algorithm described in [<A algorithm described in [<A
HREF="node36.html#BREZINA_VANEK">2</A>,<A HREF="node36.html#BREZINA_VANEK">2</A>,<A
HREF="node36.html#VANEK_MANDEL_BREZINA">25</A>]. HREF="node36.html#VANEK_MANDEL_BREZINA">26</A>].
The basic idea of this algorithm is to build a coarse set of indices The basic idea of this algorithm is to build a coarse set of indices
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img26.png" SRC="img26.png"
ALT="$\Omega^{k+1}$"></SPAN> by suitably grouping the indices of <SPAN CLASS="MATH"><IMG ALT="$\Omega^{k+1}$"></SPAN> by suitably grouping the indices of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png" SRC="img9.png"
ALT="$\Omega^k$"></SPAN> into disjoint ALT="$\Omega^k$"></SPAN> into disjoint
subsets (aggregates), and to define the coarse-to-fine space transfer operator subsets (aggregates), and to define the coarse-to-fine space transfer operator
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png" SRC="img25.png"
ALT="$P^k$"></SPAN> by applying a suitable smoother to a simple piecewise constant ALT="$P^k$"></SPAN> by applying a suitable smoother to a simple piecewise constant
prolongation operator, with the aim of improving the quality of the coarse-space correction. prolongation operator, with the aim of improving the quality of the coarse-space correction.
@ -84,26 +84,26 @@ prolongation operator, with the aim of improving the quality of the coarse-space
</BIG></BIG></BIG> </BIG></BIG></BIG>
<OL> <OL>
<LI>aggregation of the indices of <SPAN CLASS="MATH"><IMG <LI>aggregation of the indices of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png" SRC="img9.png"
ALT="$\Omega^k$"></SPAN> to obtain <SPAN CLASS="MATH"><IMG ALT="$\Omega^k$"></SPAN> to obtain <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img26.png" SRC="img26.png"
ALT="$\Omega^{k+1}$"></SPAN>; ALT="$\Omega^{k+1}$"></SPAN>;
</LI> </LI>
<LI>construction of the prolongator <SPAN CLASS="MATH"><IMG <LI>construction of the prolongator <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png" SRC="img25.png"
ALT="$P^k$"></SPAN>; ALT="$P^k$"></SPAN>;
</LI> </LI>
<LI>application of <SPAN CLASS="MATH"><IMG <LI>application of <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png" SRC="img25.png"
ALT="$P^k$"></SPAN> and <SPAN CLASS="MATH"><IMG ALT="$P^k$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="95" HEIGHT="39" ALIGN="MIDDLE" BORDER="0" WIDTH="95" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img17.png" SRC="img17.png"
ALT="$R^k=(P^k)^T$"></SPAN> to build <SPAN CLASS="MATH"><IMG ALT="$R^k=(P^k)^T$"></SPAN> to build <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img15.png" SRC="img15.png"
ALT="$A^{k+1}$"></SPAN>. ALT="$A^{k+1}$"></SPAN>.
</LI> </LI>
@ -111,18 +111,18 @@ prolongation operator, with the aim of improving the quality of the coarse-space
<P> <P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">In order to perform the coarsening step, the smoothed aggregation algorithm <BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">In order to perform the coarsening step, the smoothed aggregation algorithm
described in&nbsp;[<A described in&nbsp;[<A
HREF="node36.html#VANEK_MANDEL_BREZINA">25</A>] is used. In this algorithm, HREF="node36.html#VANEK_MANDEL_BREZINA">26</A>] is used. In this algorithm,
each index <!-- MATH each index <!-- MATH
$j \in \Omega^{k+1}$ $j \in \Omega^{k+1}$
--> -->
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="72" HEIGHT="39" ALIGN="MIDDLE" BORDER="0" WIDTH="71" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img27.png" SRC="img27.png"
ALT="$j \in \Omega^{k+1}$"></SPAN> corresponds to an aggregate <SPAN CLASS="MATH"><IMG ALT="$j \in \Omega^{k+1}$"></SPAN> corresponds to an aggregate <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0" WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img28.png" SRC="img28.png"
ALT="$\Omega^k_j$"></SPAN> of <SPAN CLASS="MATH"><IMG ALT="$\Omega^k_j$"></SPAN> of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png" SRC="img9.png"
ALT="$\Omega^k$"></SPAN>, ALT="$\Omega^k$"></SPAN>,
consisting of a suitably chosen index <!-- MATH consisting of a suitably chosen index <!-- MATH
@ -133,7 +133,7 @@ consisting of a suitably chosen index <!-- MATH
SRC="img29.png" SRC="img29.png"
ALT="$i \in \Omega^k$"></SPAN> and indices that are (usually) contained in a ALT="$i \in \Omega^k$"></SPAN> and indices that are (usually) contained in a
strongly-coupled neighborood of <SPAN CLASS="MATH"><IMG strongly-coupled neighborood of <SPAN CLASS="MATH"><IMG
WIDTH="11" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="10" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img30.png" SRC="img30.png"
ALT="$i$"></SPAN>, i.e., ALT="$i$"></SPAN>, i.e.,
</BIG></BIG></BIG> </BIG></BIG></BIG>
@ -149,11 +149,13 @@ strongly-coupled neighborood of <SPAN CLASS="MATH"><IMG
<A NAME="eq:strongly_coup"></A> <A NAME="eq:strongly_coup"></A>
<TABLE WIDTH="100%" ALIGN="CENTER"> <TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:strongly_coup"></A><IMG <TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:strongly_coup"></A><IMG
WIDTH="387" HEIGHT="72" BORDER="0" WIDTH="387" HEIGHT="49" BORDER="0"
SRC="img31.png" SRC="img31.png"
ALT="\begin{displaymath} ALT="\begin{displaymath}
\Omega^k_j \subset \mathcal{N}_i^k(\theta) = \left\{ r ... \Omega^k_j \subset \mathcal{N}_i^k(\theta) =
...vert a_{ii}^ka_{rr}^k\vert} \right \} \cup \left\{ i \right\}, \end{displaymath}"></TD> \left\{ r \i...
...vert a_{ii}^ka_{rr}^k\vert} \right \} \cup \left\{ i \right\},
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT"> <TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">3</SPAN>)</TD></TR> (<SPAN CLASS="arabic">3</SPAN>)</TD></TR>
</TABLE> </TABLE>
@ -162,10 +164,10 @@ for a given threshold <!-- MATH
$\theta \in [0,1]$ $\theta \in [0,1]$
--> -->
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="69" HEIGHT="36" ALIGN="MIDDLE" BORDER="0" WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img32.png" SRC="img32.png"
ALT="$\theta \in [0,1]$"></SPAN> (see&nbsp;[<A ALT="$\theta \in [0,1]$"></SPAN> (see&nbsp;[<A
HREF="node36.html#VANEK_MANDEL_BREZINA">25</A>] for the details). HREF="node36.html#VANEK_MANDEL_BREZINA">26</A>] for the details).
Since this algorithm has a sequential nature, a decoupled Since this algorithm has a sequential nature, a decoupled
version of it is applied, where each processor independently executes version of it is applied, where each processor independently executes
the algorithm on the set of indices assigned to it in the initial data the algorithm on the set of indices assigned to it in the initial data
@ -180,11 +182,11 @@ MLD2P4, since it has been shown to produce good results in practice
[<A [<A
HREF="node36.html#aaecc_07">5</A>,<A HREF="node36.html#aaecc_07">5</A>,<A
HREF="node36.html#apnum_07">7</A>,<A HREF="node36.html#apnum_07">7</A>,<A
HREF="node36.html#TUMINARO_TONG">24</A>]. HREF="node36.html#TUMINARO_TONG">25</A>].
</BIG></BIG></BIG> </BIG></BIG></BIG>
<P> <P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">The prolongator <SPAN CLASS="MATH"><IMG <BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">The prolongator <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png" SRC="img25.png"
ALT="$P^k$"></SPAN> is built starting from a tentative prolongator ALT="$P^k$"></SPAN> is built starting from a tentative prolongator
<!-- MATH <!-- MATH
@ -210,10 +212,14 @@ MLD2P4, since it has been shown to produce good results in practice
<A NAME="eq:tent_prol"></A> <A NAME="eq:tent_prol"></A>
<TABLE WIDTH="100%" ALIGN="CENTER"> <TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:tent_prol"></A><IMG <TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:tent_prol"></A><IMG
WIDTH="287" HEIGHT="51" BORDER="0" WIDTH="286" HEIGHT="52" BORDER="0"
SRC="img34.png" SRC="img34.png"
ALT="\begin{displaymath} \bar{P}^k =(\bar{p}_{ij}^k), \quad \bar{p}_{ij}^k = \left\{... ALT="\begin{displaymath}
...ega^k_j, 0 &amp; \quad \mbox{otherwise}, \end{array} \right. \bar{P}^k =(\bar{p}_{ij}^k), \quad \bar{p}_{ij}^k =
\left\{...
...Omega^k_j, \\
0 &amp; \quad \mbox{otherwise},
\end{array} \right.
\end{displaymath}"></TD> \end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT"> <TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">4</SPAN>)</TD></TR> (<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
@ -223,21 +229,21 @@ where <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0" WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img28.png" SRC="img28.png"
ALT="$\Omega^k_j$"></SPAN> is the aggregate of <SPAN CLASS="MATH"><IMG ALT="$\Omega^k_j$"></SPAN> is the aggregate of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png" SRC="img9.png"
ALT="$\Omega^k$"></SPAN> ALT="$\Omega^k$"></SPAN>
corresponding to the index <!-- MATH corresponding to the index <!-- MATH
$j \in \Omega^{k+1}$ $j \in \Omega^{k+1}$
--> -->
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="72" HEIGHT="39" ALIGN="MIDDLE" BORDER="0" WIDTH="71" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img27.png" SRC="img27.png"
ALT="$j \in \Omega^{k+1}$"></SPAN>. ALT="$j \in \Omega^{k+1}$"></SPAN>.
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png" SRC="img25.png"
ALT="$P^k$"></SPAN> is obtained by applying to <SPAN CLASS="MATH"><IMG ALT="$P^k$"></SPAN> is obtained by applying to <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img35.png" SRC="img35.png"
ALT="$\bar{P}^k$"></SPAN> a smoother ALT="$\bar{P}^k$"></SPAN> a smoother
<!-- MATH <!-- MATH
@ -257,9 +263,11 @@ P^k = S^k \bar{P}^k,
--> -->
<IMG <IMG
WIDTH="90" HEIGHT="30" BORDER="0" WIDTH="91" HEIGHT="30" BORDER="0"
SRC="img37.png" SRC="img37.png"
ALT="\begin{displaymath} P^k = S^k \bar{P}^k, \end{displaymath}"> ALT="\begin{displaymath}
P^k = S^k \bar{P}^k,
\end{displaymath}">
</DIV> </DIV>
<BR CLEAR="ALL"> <BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> <P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
@ -267,9 +275,9 @@ in order to remove nonsmooth components from the range of the prolongator,
and hence to improve the convergence properties of the multilevel and hence to improve the convergence properties of the multilevel
method&nbsp;[<A method&nbsp;[<A
HREF="node36.html#BREZINA_VANEK">2</A>,<A HREF="node36.html#BREZINA_VANEK">2</A>,<A
HREF="node36.html#Stuben_01">23</A>]. HREF="node36.html#Stuben_01">24</A>].
A simple choice for <SPAN CLASS="MATH"><IMG A simple choice for <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0" WIDTH="24" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img38.png" SRC="img38.png"
ALT="$S^k$"></SPAN> is the damped Jacobi smoother: ALT="$S^k$"></SPAN> is the damped Jacobi smoother:
</BIG></BIG></BIG> </BIG></BIG></BIG>
@ -282,24 +290,26 @@ S^k = I - \omega^k (D^k)^{-1} A^k_F ,
--> -->
<IMG <IMG
WIDTH="175" HEIGHT="31" BORDER="0" WIDTH="176" HEIGHT="32" BORDER="0"
SRC="img39.png" SRC="img39.png"
ALT="\begin{displaymath} S^k = I - \omega^k (D^k)^{-1} A^k_F , \end{displaymath}"> ALT="\begin{displaymath}
S^k = I - \omega^k (D^k)^{-1} A^k_F ,
\end{displaymath}">
</DIV> </DIV>
<BR CLEAR="ALL"> <BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> <P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
where <SPAN CLASS="MATH"><IMG where <SPAN CLASS="MATH"><IMG
WIDTH="28" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="28" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img40.png" SRC="img40.png"
ALT="$D^k$"></SPAN> is the diagonal matrix with the same diagonal entries as <SPAN CLASS="MATH"><IMG ALT="$D^k$"></SPAN> is the diagonal matrix with the same diagonal entries as <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png" SRC="img41.png"
ALT="$A^k$"></SPAN>, ALT="$A^k$"></SPAN>,
<!-- MATH <!-- MATH
$A^k_F = (\bar{a}_{ij}^k)$ $A^k_F = (\bar{a}_{ij}^k)$
--> -->
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="87" HEIGHT="39" ALIGN="MIDDLE" BORDER="0" WIDTH="86" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img42.png" SRC="img42.png"
ALT="$A^k_F = (\bar{a}_{ij}^k)$"></SPAN> is the filtered matrix defined as ALT="$A^k_F = (\bar{a}_{ij}^k)$"></SPAN> is the filtered matrix defined as
</BIG></BIG></BIG> </BIG></BIG></BIG>
@ -321,17 +331,20 @@ where <SPAN CLASS="MATH"><IMG
<A NAME="eq:filtered"></A> <A NAME="eq:filtered"></A>
<TABLE WIDTH="100%" ALIGN="CENTER"> <TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:filtered"></A><IMG <TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:filtered"></A><IMG
WIDTH="514" HEIGHT="74" BORDER="0" WIDTH="499" HEIGHT="59" BORDER="0"
SRC="img43.png" SRC="img43.png"
ALT="\begin{displaymath} ALT="\begin{displaymath}
\bar{a}_{ij}^k = \left \{ \begin{array}{ll} a_{ij}^k &amp; ... \bar{a}_{ij}^k =
...ii}^k = a_{ii}^k - \sum_{j \ne i} (a_{ij}^k - \bar{a}_{ij}^k), \end{displaymath}"></TD> \left \{ \begin{array}{ll}
a_{ij}^k &amp; \m...
...ii}^k = a_{ii}^k - \sum_{j \ne i} (a_{ij}^k - \bar{a}_{ij}^k),
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT"> <TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">5</SPAN>)</TD></TR> (<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
</TABLE> </TABLE>
<BR CLEAR="ALL"></DIV><P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> <BR CLEAR="ALL"></DIV><P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
and <SPAN CLASS="MATH"><IMG and <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="19" ALIGN="BOTTOM" BORDER="0" WIDTH="24" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img44.png" SRC="img44.png"
ALT="$\omega^k$"></SPAN> is an approximation of <SPAN CLASS="MATH"><IMG ALT="$\omega^k$"></SPAN> is an approximation of <SPAN CLASS="MATH"><IMG
WIDTH="61" HEIGHT="39" ALIGN="MIDDLE" BORDER="0" WIDTH="61" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
@ -360,14 +373,14 @@ of <SPAN CLASS="MATH"><IMG
SRC="img46.png" SRC="img46.png"
ALT="$\rho^k$"></SPAN>. Note that for systems coming from uniformly elliptic ALT="$\rho^k$"></SPAN>. Note that for systems coming from uniformly elliptic
problems, filtering the matrix <SPAN CLASS="MATH"><IMG problems, filtering the matrix <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png" SRC="img41.png"
ALT="$A^k$"></SPAN> has little or no effect, and ALT="$A^k$"></SPAN> has little or no effect, and
<SPAN CLASS="MATH"><IMG <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png" SRC="img41.png"
ALT="$A^k$"></SPAN> can be used instead of <SPAN CLASS="MATH"><IMG ALT="$A^k$"></SPAN> can be used instead of <SPAN CLASS="MATH"><IMG
WIDTH="29" HEIGHT="39" ALIGN="MIDDLE" BORDER="0" WIDTH="28" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img49.png" SRC="img49.png"
ALT="$A^k_F$"></SPAN>. The latter choice is the default in MLD2P4. ALT="$A^k_F$"></SPAN>. The latter choice is the default in MLD2P4.
</BIG></BIG></BIG> </BIG></BIG></BIG>

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save