Fixup the documentation.

stopcriterion
Salvatore Filippone 7 years ago
parent 8ee76a1a82
commit 4b43164668

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.4 KiB

After

Width:  |  Height:  |  Size: 2.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 233 B

After

Width:  |  Height:  |  Size: 234 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 408 B

After

Width:  |  Height:  |  Size: 404 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 191 B

After

Width:  |  Height:  |  Size: 196 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 242 B

After

Width:  |  Height:  |  Size: 233 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 766 B

After

Width:  |  Height:  |  Size: 781 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 280 B

After

Width:  |  Height:  |  Size: 278 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 532 B

After

Width:  |  Height:  |  Size: 531 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 509 B

After

Width:  |  Height:  |  Size: 510 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 280 B

After

Width:  |  Height:  |  Size: 278 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 268 B

After

Width:  |  Height:  |  Size: 265 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 351 B

After

Width:  |  Height:  |  Size: 350 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 172 B

After

Width:  |  Height:  |  Size: 173 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 217 B

After

Width:  |  Height:  |  Size: 216 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.7 KiB

After

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 373 B

After

Width:  |  Height:  |  Size: 365 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 218 B

After

Width:  |  Height:  |  Size: 217 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 236 B

After

Width:  |  Height:  |  Size: 240 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 296 B

After

Width:  |  Height:  |  Size: 292 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 403 B

After

Width:  |  Height:  |  Size: 405 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 303 B

After

Width:  |  Height:  |  Size: 295 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 355 B

After

Width:  |  Height:  |  Size: 347 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 204 B

After

Width:  |  Height:  |  Size: 203 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 B

After

Width:  |  Height:  |  Size: 179 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 403 B

After

Width:  |  Height:  |  Size: 390 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 511 B

After

Width:  |  Height:  |  Size: 511 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.5 KiB

After

Width:  |  Height:  |  Size: 1.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 243 B

After

Width:  |  Height:  |  Size: 246 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 476 B

After

Width:  |  Height:  |  Size: 475 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 482 B

After

Width:  |  Height:  |  Size: 483 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 250 B

After

Width:  |  Height:  |  Size: 248 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 761 B

After

Width:  |  Height:  |  Size: 760 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 705 B

After

Width:  |  Height:  |  Size: 689 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 259 B

After

Width:  |  Height:  |  Size: 257 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 245 B

After

Width:  |  Height:  |  Size: 242 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 559 B

After

Width:  |  Height:  |  Size: 538 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.4 KiB

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 233 B

After

Width:  |  Height:  |  Size: 230 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 473 B

After

Width:  |  Height:  |  Size: 480 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 235 B

After

Width:  |  Height:  |  Size: 235 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 506 B

After

Width:  |  Height:  |  Size: 502 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 377 B

After

Width:  |  Height:  |  Size: 378 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 294 B

After

Width:  |  Height:  |  Size: 289 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 629 B

After

Width:  |  Height:  |  Size: 643 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 257 B

After

Width:  |  Height:  |  Size: 256 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 283 B

After

Width:  |  Height:  |  Size: 292 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 276 B

After

Width:  |  Height:  |  Size: 269 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 550 B

After

Width:  |  Height:  |  Size: 573 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 228 B

After

Width:  |  Height:  |  Size: 227 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 257 B

After

Width:  |  Height:  |  Size: 255 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 540 B

After

Width:  |  Height:  |  Size: 527 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 542 B

After

Width:  |  Height:  |  Size: 533 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 378 B

After

Width:  |  Height:  |  Size: 374 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 KiB

After

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 525 B

After

Width:  |  Height:  |  Size: 537 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 274 B

After

Width:  |  Height:  |  Size: 273 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 389 B

After

Width:  |  Height:  |  Size: 389 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 286 B

After

Width:  |  Height:  |  Size: 283 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 283 B

After

Width:  |  Height:  |  Size: 282 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 271 B

After

Width:  |  Height:  |  Size: 266 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 550 B

After

Width:  |  Height:  |  Size: 547 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 413 B

After

Width:  |  Height:  |  Size: 415 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 242 B

After

Width:  |  Height:  |  Size: 239 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 290 B

After

Width:  |  Height:  |  Size: 299 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 448 B

After

Width:  |  Height:  |  Size: 458 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 KiB

After

Width:  |  Height:  |  Size: 1.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 587 B

After

Width:  |  Height:  |  Size: 605 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 619 B

After

Width:  |  Height:  |  Size: 622 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 B

After

Width:  |  Height:  |  Size: 180 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 211 B

After

Width:  |  Height:  |  Size: 203 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 202 B

After

Width:  |  Height:  |  Size: 201 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 250 B

After

Width:  |  Height:  |  Size: 249 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 447 B

After

Width:  |  Height:  |  Size: 442 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 200 B

After

Width:  |  Height:  |  Size: 192 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 197 B

After

Width:  |  Height:  |  Size: 199 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 316 B

After

Width:  |  Height:  |  Size: 309 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 259 B

After

Width:  |  Height:  |  Size: 272 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 329 B

After

Width:  |  Height:  |  Size: 321 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 207 B

After

Width:  |  Height:  |  Size: 209 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 206 B

After

Width:  |  Height:  |  Size: 206 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 270 B

After

Width:  |  Height:  |  Size: 272 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 255 B

After

Width:  |  Height:  |  Size: 254 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 176 B

After

Width:  |  Height:  |  Size: 166 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 582 B

After

Width:  |  Height:  |  Size: 574 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 224 B

After

Width:  |  Height:  |  Size: 248 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 195 B

After

Width:  |  Height:  |  Size: 188 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 211 B

After

Width:  |  Height:  |  Size: 209 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 258 B

After

Width:  |  Height:  |  Size: 253 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 518 B

After

Width:  |  Height:  |  Size: 506 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 549 B

After

Width:  |  Height:  |  Size: 547 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 306 B

After

Width:  |  Height:  |  Size: 300 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 546 B

After

Width:  |  Height:  |  Size: 558 B

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) -->
<!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML>
<HEAD>
<TITLE>userhtml</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2">
<META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">
@ -69,17 +69,15 @@ based on PSBLAS</BIG></SPAN>
<BR>
<BR>
<BR>
Software version: 2.1
Software version: 2.2
<BR>
July 31, 2017
July 31, 2018
<BR>
</BIG></BIG></BIG>
<P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
</BIG></BIG></BIG>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"> </BIG></BIG></BIG>
<P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG></BIG>
<BR><HR>

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) -->
<!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML>
<HEAD>
<TITLE>Abstract</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2">
<META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) -->
<!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML>
<HEAD>
<TITLE>Bug reporting</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2">
<META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) -->
<!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML>
<HEAD>
<TITLE>Example and test programs</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2">
<META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) -->
<!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML>
<HEAD>
<TITLE>Multigrid Background</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2">
<META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">
@ -88,19 +88,19 @@ are considered. The second approach performs a fully automatic coarsening and en
interplay between fine and coarse level by suitably choosing the coarse space and
the coarse-to-fine interpolation (see, e.g., [<A
HREF="node36.html#Briggs2000">3</A>,<A
HREF="node36.html#Stuben_01">23</A>,<A
HREF="node36.html#dd2_96">21</A>] for details.)
HREF="node36.html#Stuben_01">24</A>,<A
HREF="node36.html#dd2_96">22</A>] for details.)
</BIG></BIG></BIG>
<P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">MLD2P4 uses a pure algebraic approach, based on the smoothed
aggregation algorithm [<A
HREF="node36.html#BREZINA_VANEK">2</A>,<A
HREF="node36.html#VANEK_MANDEL_BREZINA">25</A>],
HREF="node36.html#VANEK_MANDEL_BREZINA">26</A>],
for building the sequence of coarse matrices and transfer operators,
starting from the original one.
A decoupled version of this algorithm is implemented, where the smoothed
aggregation is applied locally to each submatrix [<A
HREF="node36.html#TUMINARO_TONG">24</A>].
HREF="node36.html#TUMINARO_TONG">25</A>].
A brief description of the AMG preconditioners implemented in MLD2P4 is given in
Sections&nbsp;<A HREF="node13.html#sec:multilevel">4.1</A>-<A HREF="node15.html#sec:smoothers">4.3</A>. For further details the reader
is referred to [<A

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) -->
<!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML>
<HEAD>
<TITLE>AMG preconditioners</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2">
<META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">
@ -67,7 +67,7 @@ Ax=b,
<A NAME="eq:system"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:system"></A><IMG
WIDTH="58" HEIGHT="30" BORDER="0"
WIDTH="57" HEIGHT="30" BORDER="0"
SRC="img2.png"
ALT="\begin{displaymath}
Ax=b,
@ -80,7 +80,7 @@ where <!-- MATH
$A=(a_{ij}) \in \mathbb{R}^{n \times n}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="137" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
WIDTH="137" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img5.png"
ALT="$A=(a_{ij}) \in \mathbb{R}^{n \times n}$"></SPAN> is a nonsingular sparse matrix;
for ease of presentation we assume <SPAN CLASS="MATH"><IMG
@ -98,7 +98,7 @@ pattern.
$\Omega = \{1, 2, \ldots, n\}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="132" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
WIDTH="131" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img6.png"
ALT="$\Omega = \{1, 2, \ldots, n\}$"></SPAN>.
Any algebraic multilevel preconditioners implemented in MLD2P4 generates
@ -116,7 +116,8 @@ a hierarchy of index spaces and a corresponding hierarchy of matrices,
<IMG
WIDTH="398" HEIGHT="30" BORDER="0"
SRC="img7.png"
ALT="\begin{displaymath}\Omega^1 \equiv \Omega \supset \Omega^2 \supset \ldots \supset \Omega^{nlev}, \quad A^1 \equiv A, A^2, \ldots, A^{nlev}, \end{displaymath}">
ALT="\begin{displaymath}\Omega^1 \equiv \Omega \supset \Omega^2 \supset \ldots \supset \Omega^{nlev},
\quad A^1 \equiv A, A^2, \ldots, A^{nlev}, \end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
@ -132,28 +133,28 @@ A vector space <!-- MATH
$\mathbb{R}^{n_{k}}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="33" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
WIDTH="33" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img8.png"
ALT="$\mathbb{R}^{n_{k}}$"></SPAN> is associated with <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"></SPAN>,
where <SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img10.png"
ALT="$n_k$"></SPAN> is the size of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"></SPAN>.
For all <SPAN CLASS="MATH"><IMG
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img11.png"
ALT="$k &lt; nlev$"></SPAN>, a restriction operator and a prolongation one are built,
which connect two levels <SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
WIDTH="14" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img12.png"
ALT="$k$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img13.png"
ALT="$k+1$"></SPAN>:
</BIG></BIG></BIG>
@ -167,14 +168,17 @@ P^k \in \mathbb{R}^{n_k \times n_{k+1}}, \quad
-->
<IMG
WIDTH="254" HEIGHT="30" BORDER="0"
WIDTH="255" HEIGHT="30" BORDER="0"
SRC="img14.png"
ALT="\begin{displaymath} P^k \in \mathbb{R}^{n_k \times n_{k+1}}, \quad R^k \in \mathbb{R}^{n_{k+1}\times n_k}; \end{displaymath}">
ALT="\begin{displaymath}
P^k \in \mathbb{R}^{n_k \times n_{k+1}}, \quad
R^k \in \mathbb{R}^{n_{k+1}\times n_k};
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
the matrix <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img15.png"
ALT="$A^{k+1}$"></SPAN> is computed by using the previous operators according
to the Galerkin approach, i.e.,
@ -188,9 +192,11 @@ A^{k+1}=R^kA^kP^k.
-->
<IMG
WIDTH="131" HEIGHT="27" BORDER="0"
WIDTH="131" HEIGHT="28" BORDER="0"
SRC="img16.png"
ALT="\begin{displaymath} A^{k+1}=R^kA^kP^k. \end{displaymath}">
ALT="\begin{displaymath}
A^{k+1}=R^kA^kP^k.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
@ -199,10 +205,10 @@ In the current implementation of MLD2P4 we have <SPAN CLASS="MATH"><IMG
SRC="img17.png"
ALT="$R^k=(P^k)^T$"></SPAN>
A smoother with iteration matrix <SPAN CLASS="MATH"><IMG
WIDTH="32" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="31" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img18.png"
ALT="$M^k$"></SPAN> is set up at each level <SPAN CLASS="MATH"><IMG
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img11.png"
ALT="$k &lt; nlev$"></SPAN>, and a solver
is set up at the coarsest level, so that they are ready for application
@ -211,7 +217,7 @@ is set up at the coarsest level, so that they are ready for application
SRC="img19.png"
ALT="$LU$"></SPAN> factorization means computing
and storing the <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img20.png"
ALT="$L$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
@ -251,8 +257,15 @@ end
<IMG
WIDTH="333" HEIGHT="336" ALIGN="BOTTOM" BORDER="0"
SRC="img22.png"
ALT="\framebox{ \begin{minipage}{.85\textwidth} \begin{tabbing} \quad \=\quad \=\quad...
...mm] \&gt;endif [1mm] \&gt;return $u^k$ [1mm] end \end{tabbing} \end{minipage} }">
ALT="\framebox{
\begin{minipage}{.85\textwidth}
\begin{tabbing}
\quad \=\quad \=\quad...
...[1mm]
\&gt;endif [1mm]
\&gt;return $u^k$ [1mm]
end
\end{tabbing}\end{minipage}}">
</DIV></TD></TR>
</TABLE>
@ -263,14 +276,14 @@ end
to obtain different multilevel preconditioners;
this is done in the application phase, i.e., in the computation of a vector
of type <SPAN CLASS="MATH"><IMG
WIDTH="82" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
WIDTH="81" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$w=B^{-1}v$"></SPAN>, where <SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img24.png"
ALT="$B$"></SPAN> denotes the preconditioner, usually within an iteration
of a Krylov solver [<A
HREF="node36.html#Saad_book">20</A>]. An example of such a combination, known as
HREF="node36.html#Saad_book">21</A>]. An example of such a combination, known as
V-cycle, is given in Figure&nbsp;<A HREF="#fig:application_alg">1</A>. In this case, a single iteration
of the same smoother is used before and after the the recursive call to the V-cycle (i.e.,
in the pre-smoothing and post-smoothing phases); however, different choices can be
@ -278,7 +291,7 @@ performed. Other cycles can be defined; in MLD2P4, we implemented the standard V
and W-cycle&nbsp;[<A
HREF="node36.html#Briggs2000">3</A>], and a version of the K-cycle described
in&nbsp;[<A
HREF="node36.html#Notay2008">19</A>].
HREF="node36.html#Notay2008">20</A>].
</BIG></BIG></BIG>
<P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG>

@ -1,6 +1,6 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2017.2 (Released Jan 23, 2017) -->
<!--Converted with LaTeX2HTML 2018 (Released Feb 1, 2018) -->
<HTML>
<HEAD>
<TITLE>Smoothed Aggregation</TITLE>
@ -9,7 +9,7 @@
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2017.2">
<META NAME="Generator" CONTENT="LaTeX2HTML v2018">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="userhtml.css">
@ -54,27 +54,27 @@ Smoothed Aggregation
</H2><BIG CLASS="LARGE"><BIG CLASS="LARGE"></BIG></BIG>
<P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">In order to define the prolongator <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"></SPAN>, used to compute
the coarse-level matrix <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img15.png"
ALT="$A^{k+1}$"></SPAN>, MLD2P4 uses the smoothed aggregation
algorithm described in [<A
HREF="node36.html#BREZINA_VANEK">2</A>,<A
HREF="node36.html#VANEK_MANDEL_BREZINA">25</A>].
HREF="node36.html#VANEK_MANDEL_BREZINA">26</A>].
The basic idea of this algorithm is to build a coarse set of indices
<SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img26.png"
ALT="$\Omega^{k+1}$"></SPAN> by suitably grouping the indices of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"></SPAN> into disjoint
subsets (aggregates), and to define the coarse-to-fine space transfer operator
<SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"></SPAN> by applying a suitable smoother to a simple piecewise constant
prolongation operator, with the aim of improving the quality of the coarse-space correction.
@ -84,26 +84,26 @@ prolongation operator, with the aim of improving the quality of the coarse-space
</BIG></BIG></BIG>
<OL>
<LI>aggregation of the indices of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"></SPAN> to obtain <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img26.png"
ALT="$\Omega^{k+1}$"></SPAN>;
</LI>
<LI>construction of the prolongator <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"></SPAN>;
</LI>
<LI>application of <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="95" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img17.png"
ALT="$R^k=(P^k)^T$"></SPAN> to build <SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="43" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img15.png"
ALT="$A^{k+1}$"></SPAN>.
</LI>
@ -111,18 +111,18 @@ prolongation operator, with the aim of improving the quality of the coarse-space
<P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">In order to perform the coarsening step, the smoothed aggregation algorithm
described in&nbsp;[<A
HREF="node36.html#VANEK_MANDEL_BREZINA">25</A>] is used. In this algorithm,
HREF="node36.html#VANEK_MANDEL_BREZINA">26</A>] is used. In this algorithm,
each index <!-- MATH
$j \in \Omega^{k+1}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="72" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
WIDTH="71" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img27.png"
ALT="$j \in \Omega^{k+1}$"></SPAN> corresponds to an aggregate <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img28.png"
ALT="$\Omega^k_j$"></SPAN> of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"></SPAN>,
consisting of a suitably chosen index <!-- MATH
@ -133,7 +133,7 @@ consisting of a suitably chosen index <!-- MATH
SRC="img29.png"
ALT="$i \in \Omega^k$"></SPAN> and indices that are (usually) contained in a
strongly-coupled neighborood of <SPAN CLASS="MATH"><IMG
WIDTH="11" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="10" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img30.png"
ALT="$i$"></SPAN>, i.e.,
</BIG></BIG></BIG>
@ -149,11 +149,13 @@ strongly-coupled neighborood of <SPAN CLASS="MATH"><IMG
<A NAME="eq:strongly_coup"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:strongly_coup"></A><IMG
WIDTH="387" HEIGHT="72" BORDER="0"
WIDTH="387" HEIGHT="49" BORDER="0"
SRC="img31.png"
ALT="\begin{displaymath}
\Omega^k_j \subset \mathcal{N}_i^k(\theta) = \left\{ r ...
...vert a_{ii}^ka_{rr}^k\vert} \right \} \cup \left\{ i \right\}, \end{displaymath}"></TD>
\Omega^k_j \subset \mathcal{N}_i^k(\theta) =
\left\{ r \i...
...vert a_{ii}^ka_{rr}^k\vert} \right \} \cup \left\{ i \right\},
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">3</SPAN>)</TD></TR>
</TABLE>
@ -162,10 +164,10 @@ for a given threshold <!-- MATH
$\theta \in [0,1]$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="69" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img32.png"
ALT="$\theta \in [0,1]$"></SPAN> (see&nbsp;[<A
HREF="node36.html#VANEK_MANDEL_BREZINA">25</A>] for the details).
HREF="node36.html#VANEK_MANDEL_BREZINA">26</A>] for the details).
Since this algorithm has a sequential nature, a decoupled
version of it is applied, where each processor independently executes
the algorithm on the set of indices assigned to it in the initial data
@ -180,11 +182,11 @@ MLD2P4, since it has been shown to produce good results in practice
[<A
HREF="node36.html#aaecc_07">5</A>,<A
HREF="node36.html#apnum_07">7</A>,<A
HREF="node36.html#TUMINARO_TONG">24</A>].
HREF="node36.html#TUMINARO_TONG">25</A>].
</BIG></BIG></BIG>
<P>
<BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">The prolongator <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"></SPAN> is built starting from a tentative prolongator
<!-- MATH
@ -210,10 +212,14 @@ MLD2P4, since it has been shown to produce good results in practice
<A NAME="eq:tent_prol"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:tent_prol"></A><IMG
WIDTH="287" HEIGHT="51" BORDER="0"
WIDTH="286" HEIGHT="52" BORDER="0"
SRC="img34.png"
ALT="\begin{displaymath} \bar{P}^k =(\bar{p}_{ij}^k), \quad \bar{p}_{ij}^k = \left\{...
...ega^k_j, 0 &amp; \quad \mbox{otherwise}, \end{array} \right.
ALT="\begin{displaymath}
\bar{P}^k =(\bar{p}_{ij}^k), \quad \bar{p}_{ij}^k =
\left\{...
...Omega^k_j, \\
0 &amp; \quad \mbox{otherwise},
\end{array} \right.
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
@ -223,21 +229,21 @@ where <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img28.png"
ALT="$\Omega^k_j$"></SPAN> is the aggregate of <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img9.png"
ALT="$\Omega^k$"></SPAN>
corresponding to the index <!-- MATH
$j \in \Omega^{k+1}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="72" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
WIDTH="71" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img27.png"
ALT="$j \in \Omega^{k+1}$"></SPAN>.
<SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$P^k$"></SPAN> is obtained by applying to <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="26" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img35.png"
ALT="$\bar{P}^k$"></SPAN> a smoother
<!-- MATH
@ -257,9 +263,11 @@ P^k = S^k \bar{P}^k,
-->
<IMG
WIDTH="90" HEIGHT="30" BORDER="0"
WIDTH="91" HEIGHT="30" BORDER="0"
SRC="img37.png"
ALT="\begin{displaymath} P^k = S^k \bar{P}^k, \end{displaymath}">
ALT="\begin{displaymath}
P^k = S^k \bar{P}^k,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
@ -267,9 +275,9 @@ in order to remove nonsmooth components from the range of the prolongator,
and hence to improve the convergence properties of the multilevel
method&nbsp;[<A
HREF="node36.html#BREZINA_VANEK">2</A>,<A
HREF="node36.html#Stuben_01">23</A>].
HREF="node36.html#Stuben_01">24</A>].
A simple choice for <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
WIDTH="24" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img38.png"
ALT="$S^k$"></SPAN> is the damped Jacobi smoother:
</BIG></BIG></BIG>
@ -282,24 +290,26 @@ S^k = I - \omega^k (D^k)^{-1} A^k_F ,
-->
<IMG
WIDTH="175" HEIGHT="31" BORDER="0"
WIDTH="176" HEIGHT="32" BORDER="0"
SRC="img39.png"
ALT="\begin{displaymath} S^k = I - \omega^k (D^k)^{-1} A^k_F , \end{displaymath}">
ALT="\begin{displaymath}
S^k = I - \omega^k (D^k)^{-1} A^k_F ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
where <SPAN CLASS="MATH"><IMG
WIDTH="28" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="28" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img40.png"
ALT="$D^k$"></SPAN> is the diagonal matrix with the same diagonal entries as <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$A^k$"></SPAN>,
<!-- MATH
$A^k_F = (\bar{a}_{ij}^k)$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="87" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
WIDTH="86" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img42.png"
ALT="$A^k_F = (\bar{a}_{ij}^k)$"></SPAN> is the filtered matrix defined as
</BIG></BIG></BIG>
@ -321,17 +331,20 @@ where <SPAN CLASS="MATH"><IMG
<A NAME="eq:filtered"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:filtered"></A><IMG
WIDTH="514" HEIGHT="74" BORDER="0"
WIDTH="499" HEIGHT="59" BORDER="0"
SRC="img43.png"
ALT="\begin{displaymath}
\bar{a}_{ij}^k = \left \{ \begin{array}{ll} a_{ij}^k &amp; ...
...ii}^k = a_{ii}^k - \sum_{j \ne i} (a_{ij}^k - \bar{a}_{ij}^k), \end{displaymath}"></TD>
\bar{a}_{ij}^k =
\left \{ \begin{array}{ll}
a_{ij}^k &amp; \m...
...ii}^k = a_{ii}^k - \sum_{j \ne i} (a_{ij}^k - \bar{a}_{ij}^k),
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P><BIG CLASS="LARGE"><BIG CLASS="LARGE"><BIG CLASS="LARGE">
and <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
WIDTH="24" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img44.png"
ALT="$\omega^k$"></SPAN> is an approximation of <SPAN CLASS="MATH"><IMG
WIDTH="61" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
@ -360,14 +373,14 @@ of <SPAN CLASS="MATH"><IMG
SRC="img46.png"
ALT="$\rho^k$"></SPAN>. Note that for systems coming from uniformly elliptic
problems, filtering the matrix <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$A^k$"></SPAN> has little or no effect, and
<SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
WIDTH="25" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$A^k$"></SPAN> can be used instead of <SPAN CLASS="MATH"><IMG
WIDTH="29" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
WIDTH="28" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img49.png"
ALT="$A^k_F$"></SPAN>. The latter choice is the default in MLD2P4.
</BIG></BIG></BIG>

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save