|
|
@ -270,14 +270,14 @@ class="small-caps">i</span><span
|
|
|
|
class="small-caps">o</span><span
|
|
|
|
class="small-caps">o</span><span
|
|
|
|
class="small-caps">n</span><span
|
|
|
|
class="small-caps">n</span><span
|
|
|
|
class="small-caps">e</span><span
|
|
|
|
class="small-caps">e</span><span
|
|
|
|
class="small-caps">r</span></span> </td></tr><tr
|
|
|
|
class="small-caps">r</span></span> </td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-2-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-2-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-2-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-2-1"
|
|
|
|
class="td11">No preconditioner </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-2"
|
|
|
|
class="td11">No preconditioner </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-2"
|
|
|
|
class="td11"><!--l. 62--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 62--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">’NONE’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-3"
|
|
|
|
class="cmtt-10x-x-109">’NONE’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-3"
|
|
|
|
class="td11"><!--l. 62--><p class="noindent" >Considered to use the PSBLAS Krylov solvers
|
|
|
|
class="td11"><!--l. 62--><p class="noindent" >Considered to use the PSBLAS Krylov
|
|
|
|
with no preconditioner. </td>
|
|
|
|
solvers with no preconditioner. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-3-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-3-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-3-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-3-1"
|
|
|
@ -288,10 +288,10 @@ class="cmtt-10x-x-109">’DIAG’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’JACOBI’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’JACOBI’</span></span></span>,
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">’L1-JACOBI’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-3"
|
|
|
|
class="cmtt-10x-x-109">’L1-JACOBI’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-3"
|
|
|
|
class="td11"><!--l. 64--><p class="noindent" >Diagonal preconditioner. For any zero diagonal
|
|
|
|
class="td11"><!--l. 64--><p class="noindent" >Diagonal preconditioner. For any zero
|
|
|
|
entry of the matrix to be preconditioned, the
|
|
|
|
diagonal entry of the matrix to be
|
|
|
|
corresponding entry of the preconditioner is set
|
|
|
|
preconditioned, the corresponding entry
|
|
|
|
to 1. </td>
|
|
|
|
of the preconditioner is set to 1. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-4-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-4-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-4-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-4-1"
|
|
|
@ -300,8 +300,9 @@ class="td11"><!--l. 67--><p class="noindent" ><span class="obeylines-h"><span cl
|
|
|
|
class="cmtt-10x-x-109">’GS’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’GS’</span></span></span>,
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">’L1-GS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-3"
|
|
|
|
class="cmtt-10x-x-109">’L1-GS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-3"
|
|
|
|
class="td11"><!--l. 67--><p class="noindent" >Hybrid Gauss-Seidel (forward), that is, global
|
|
|
|
class="td11"><!--l. 67--><p class="noindent" >Hybrid Gauss-Seidel (forward), that is,
|
|
|
|
block Jacobi with Gauss-Seidel as local solver. </td>
|
|
|
|
global block Jacobi with Gauss-Seidel as
|
|
|
|
|
|
|
|
local solver. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-5-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-5-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-5-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-5-1"
|
|
|
@ -310,9 +311,9 @@ class="td11"><!--l. 70--><p class="noindent" ><span class="obeylines-h"><span cl
|
|
|
|
class="cmtt-10x-x-109">’FBGS’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’FBGS’</span></span></span>,
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">’L1-FBGS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-3"
|
|
|
|
class="cmtt-10x-x-109">’L1-FBGS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-3"
|
|
|
|
class="td11"><!--l. 70--><p class="noindent" >Symmetrized hybrid Gauss-Seidel, that is,
|
|
|
|
class="td11"><!--l. 70--><p class="noindent" >Symmetrized hybrid Gauss-Seidel, that
|
|
|
|
forward Gauss-Seidel followed by backward
|
|
|
|
is, forward Gauss-Seidel followed by
|
|
|
|
Gauss-Seidel. </td>
|
|
|
|
backward Gauss-Seidel. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-6-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-6-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-6-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-6-1"
|
|
|
@ -321,31 +322,33 @@ class="td11"><!--l. 73--><p class="noindent" ><span class="obeylines-h"><span cl
|
|
|
|
class="cmtt-10x-x-109">’BJAC’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’BJAC’</span></span></span>,
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">’L1-BJAC’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-3"
|
|
|
|
class="cmtt-10x-x-109">’L1-BJAC’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-3"
|
|
|
|
class="td11"><!--l. 73--><p class="noindent" >Block-Jacobi with ILU(0) on the local blocks. </td>
|
|
|
|
class="td11"><!--l. 73--><p class="noindent" >Block-Jacobi with ILU(0) on the local
|
|
|
|
|
|
|
|
blocks. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-7-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-7-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-7-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-7-1"
|
|
|
|
class="td11">Additive Schwarz </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-2"
|
|
|
|
class="td11">Additive Schwarz </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-2"
|
|
|
|
class="td11"><!--l. 74--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 74--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">’AS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-3"
|
|
|
|
class="cmtt-10x-x-109">’AS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-3"
|
|
|
|
class="td11"><!--l. 74--><p class="noindent" >Additive Schwarz (AS), with overlap 1 and
|
|
|
|
class="td11"><!--l. 74--><p class="noindent" >Additive Schwarz (AS), with overlap 1
|
|
|
|
ILU(0) on the local blocks. </td>
|
|
|
|
and ILU(0) on the local blocks. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-8-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-8-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-8-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-8-1"
|
|
|
|
class="td11">Multilevel </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-2"
|
|
|
|
class="td11">Multilevel </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-2"
|
|
|
|
class="td11"><!--l. 76--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 76--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">’ML’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-3"
|
|
|
|
class="cmtt-10x-x-109">’ML’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-3"
|
|
|
|
class="td11"><!--l. 76--><p class="noindent" >V-cycle with one hybrid forward Gauss-Seidel
|
|
|
|
class="td11"><!--l. 76--><p class="noindent" >V-cycle with one hybrid
|
|
|
|
(GS) sweep
|
|
|
|
forward Gauss-Seidel (GS) sweep as
|
|
|
|
as pre-smoother and one hybrid backward GS
|
|
|
|
pre-smoother and one hybrid backward
|
|
|
|
sweep as post-smoother, decoupled smoothed
|
|
|
|
GS sweep as post-smoother, decoupled
|
|
|
|
aggregation as coarsening algorithm, and LU
|
|
|
|
smoothed aggregation as coarsening
|
|
|
|
(plus triangular solve) as coarsest-level solver.
|
|
|
|
algorithm, and LU (plus triangular solve)
|
|
|
|
See the default values in Tables <a
|
|
|
|
as coarsest-level solver. See the default
|
|
|
|
|
|
|
|
values in Tables <a
|
|
|
|
href="userhtmlsu8.html#x17-160092">2<!--tex4ht:ref: tab:p_cycle --></a>-<a
|
|
|
|
href="userhtmlsu8.html#x17-160092">2<!--tex4ht:ref: tab:p_cycle --></a>-<a
|
|
|
|
href="userhtmlsu8.html#x17-160158">8<!--tex4ht:ref: tab:p_smoother_1 --></a> for further
|
|
|
|
href="userhtmlsu8.html#x17-160158">8<!--tex4ht:ref: tab:p_smoother_1 --></a> for further details of
|
|
|
|
details of the preconditioner. </td>
|
|
|
|
the preconditioner. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-9-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-9-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-9-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-9-1"
|
|
|
|