Fixed TeX formatting

mergeparmatch
Cirdans-Home 4 years ago
parent 8150483b70
commit 65c23c5e0d

Binary file not shown.

@ -36,7 +36,8 @@ class="cmr-12">This section describes the basics for building and applying AMG4P
<span <span
class="cmr-12">and multilevel (i.e., AMG) preconditioners with the Krylov solvers included in</span> class="cmr-12">and multilevel (i.e., AMG) preconditioners with the Krylov solvers included in</span>
<span <span
class="cmr-12">PSBLAS </span><span class="cite"><span class="cmr-12">PSBLAS</span><span
class="cmr-12">&#x00A0;</span><span class="cite"><span
class="cmr-12">[</span><a class="cmr-12">[</span><a
href="userhtmlli5.html#XPSBLASGUIDE"><span href="userhtmlli5.html#XPSBLASGUIDE"><span
class="cmr-12">18</span></a><span class="cmr-12">18</span></a><span
@ -432,7 +433,8 @@ class="cmr-12">linear system comes from a standard discretization of basic scala
<span <span
class="cmr-12">problems. However, this does not necessarily correspond to the shortest execution time</span> class="cmr-12">problems. However, this does not necessarily correspond to the shortest execution time</span>
<span <span
class="cmr-12">on parallel computers.</span> class="cmr-12">on parallel</span><span
class="cmr-12">&#x00A0;computers.</span>
<div class="subsectionTOCS"> <div class="subsectionTOCS">
<span <span
class="cmr-12">&#x00A0;</span><span class="subsectionToc" ><span class="cmr-12">&#x00A0;</span><span class="subsectionToc" ><span

@ -1565,7 +1565,7 @@ class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap;
class="td11"><span class="lstinline"></span><!--l. 501--><p class="noindent" ><span class="td11"><span class="lstinline"></span><!--l. 501--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-3" class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-3"
class="td11"><!--l. 501--><p class="noindent" >Any integer class="td11"><!--l. 501--><p class="noindent" >Any integer
<span <!--l. 501--><p class="noindent" ><span
class="cmmi-10x-x-109">&#x003E; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-4" class="cmmi-10x-x-109">&#x003E; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-4"
class="td11"><!--l. 501--><p class="noindent" >-1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-5" class="td11"><!--l. 501--><p class="noindent" >-1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-4-5"
class="td11"><!--l. 501--><p class="noindent" >Number of iterations after which a trace is to class="td11"><!--l. 501--><p class="noindent" >Number of iterations after which a trace is to
@ -1580,7 +1580,7 @@ class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:nowrap; t
class="td11"><span class="lstinline"></span><!--l. 502--><p class="noindent" ><span class="td11"><span class="lstinline"></span><!--l. 502--><p class="noindent" ><span
class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-3" class="cmtt-10x-x-109">integer</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-3"
class="td11"><!--l. 502--><p class="noindent" >Any integer class="td11"><!--l. 502--><p class="noindent" >Any integer
<span <!--l. 502--><p class="noindent" ><span
class="cmmi-10x-x-109">&#x003E; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-4" class="cmmi-10x-x-109">&#x003E; </span>0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-4"
class="td11"><!--l. 502--><p class="noindent" >-1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-5" class="td11"><!--l. 502--><p class="noindent" >-1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-5-5"
class="td11"><!--l. 502--><p class="noindent" >Number of iterations after which a residual is class="td11"><!--l. 502--><p class="noindent" >Number of iterations after which a residual is
@ -1597,9 +1597,9 @@ class="cmtt-10x-x-109">real</span><span
class="cmtt-10x-x-109">(</span><span class="cmtt-10x-x-109">(</span><span
class="cmtt-10x-x-109">kind_parameter</span><span class="cmtt-10x-x-109">kind_parameter</span><span
class="cmtt-10x-x-109">)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-3" class="cmtt-10x-x-109">)</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-3"
class="td11"><!--l. 503--><p class="noindent" >Any real <span class="td11"><!--l. 503--><p class="noindent" >Any real
class="cmmi-10x-x-109">&#x003C;</span> <!--l. 503--><p class="noindent" ><span
1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-4" class="cmmi-10x-x-109">&#x003C; </span>1 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-4"
class="td11"><!--l. 503--><p class="noindent" >0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-5" class="td11"><!--l. 503--><p class="noindent" >0 </td><td style="white-space:wrap; text-align:left;" id="TBL-8-6-5"
class="td11"><!--l. 503--><p class="noindent" >Tolerance for the stopping criterion on the class="td11"><!--l. 503--><p class="noindent" >Tolerance for the stopping criterion on the
residual. </td> residual. </td>

@ -4,7 +4,7 @@
This section describes the basics for building and applying This section describes the basics for building and applying
AMG4PSBLAS one-level and multilevel (i.e., AMG) preconditioners with AMG4PSBLAS one-level and multilevel (i.e., AMG) preconditioners with
the Krylov solvers included in PSBLAS \cite{PSBLASGUIDE}. the Krylov solvers included in PSBLAS~\cite{PSBLASGUIDE}.
The following steps are required: The following steps are required:
\begin{enumerate} \begin{enumerate}
@ -108,7 +108,7 @@ usually lead to smaller numbers of preconditioned Krylov
iterations than inexact solvers, when the linear system comes from iterations than inexact solvers, when the linear system comes from
a standard discretization of basic scalar elliptic PDE problems. However, a standard discretization of basic scalar elliptic PDE problems. However,
this does not necessarily correspond to the shortest execution time this does not necessarily correspond to the shortest execution time
on parallel computers. on parallel~computers.
\subsection{Examples\label{sec:examples}} \subsection{Examples\label{sec:examples}}

@ -14,7 +14,7 @@ For backward compatibility, methods are also accessible as
stand-alone subroutines. stand-alone subroutines.
For each method, the same user interface is overloaded with For each method, the same user interface is overloaded with
respect to the real/complex and single/double precision data; respect to the real/\-com\-plex and single/double precision data;
arguments with appropriate data types must be passed to the method, i.e., arguments with appropriate data types must be passed to the method, i.e.,
\begin{itemize} \begin{itemize}
\item the sparse matrix data structure, containing the matrix to be \item the sparse matrix data structure, containing the matrix to be
@ -498,9 +498,9 @@ level (continued).\label{tab:p_coarse_1}}
\textsc{comments} \\ \hline \textsc{comments} \\ \hline
\fortinline|'BJAC_STOP'| & \fortinline|character(len=*)| & \fortinline|'FALSE'| \par \fortinline|'TRUE'| & \fortinline|'FALSE'| & Select whether to use a stopping criterion for the Block-Jacobi method used as a coarse solver. \\ \hline \fortinline|'BJAC_STOP'| & \fortinline|character(len=*)| & \fortinline|'FALSE'| \par \fortinline|'TRUE'| & \fortinline|'FALSE'| & Select whether to use a stopping criterion for the Block-Jacobi method used as a coarse solver. \\ \hline
\fortinline|'BJAC_TRACE'| & \fortinline|character(len=*)| & \fortinline|'FALSE'| \par \fortinline|'TRUE'| & \fortinline|'FALSE'| & Select whether to print a trace for the calculated residual for the Block-Jacobi method used as a coarse solver. \\ \hline \fortinline|'BJAC_TRACE'| & \fortinline|character(len=*)| & \fortinline|'FALSE'| \par \fortinline|'TRUE'| & \fortinline|'FALSE'| & Select whether to print a trace for the calculated residual for the Block-Jacobi method used as a coarse solver. \\ \hline
\fortinline|'BJAC_ITRACE'| & \fortinline|integer| & Any integer $>0$ & -1 & Number of iterations after which a trace is to be printed. \\ \hline \fortinline|'BJAC_ITRACE'| & \fortinline|integer| & Any integer\par $>0$ & -1 & Number of iterations after which a trace is to be printed. \\ \hline
\fortinline|'BJAC_RESCHECK'|& \fortinline|integer| & Any integer $>0$ & -1 & Number of iterations after which a residual is to be calculated. \\ \hline \fortinline|'BJAC_RESCHECK'|& \fortinline|integer| & Any integer\par $>0$ & -1 & Number of iterations after which a residual is to be calculated. \\ \hline
\fortinline|'BJAC_STOPTOL'| & \fortinline|real(kind_parameter)| & Any real $<1$ & 0 & Tolerance for the stopping criterion on the residual. \\ \hline \fortinline|'BJAC_STOPTOL'| & \fortinline|real(kind_parameter)| & Any real\par $<1$ & 0 & Tolerance for the stopping criterion on the residual. \\ \hline
\fortinline|'KRM_METHOD'| & \fortinline|character(len=*)| & \fortinline|'CG'| \par \fortinline|'FCG'| \par \fortinline|'CGS'| \par \fortinline|'CGR'| \par \fortinline|'BICG'| \par \fortinline|'BICGSTAB'| \par \fortinline|'BICGSTABL'| \par \fortinline|'RGMRES'| & \fortinline|'FCG'| & A string that defines the iterative method to be \fortinline|'KRM_METHOD'| & \fortinline|character(len=*)| & \fortinline|'CG'| \par \fortinline|'FCG'| \par \fortinline|'CGS'| \par \fortinline|'CGR'| \par \fortinline|'BICG'| \par \fortinline|'BICGSTAB'| \par \fortinline|'BICGSTABL'| \par \fortinline|'RGMRES'| & \fortinline|'FCG'| & A string that defines the iterative method to be
used. \texttt{CG} the Conjugate Gradient method; used. \texttt{CG} the Conjugate Gradient method;
\texttt{CGS} the Conjugate Gradient Stabilized method; \texttt{CGS} the Conjugate Gradient Stabilized method;
@ -510,7 +510,7 @@ level (continued).\label{tab:p_coarse_1}}
\texttt{BICGSTAB} the Bi-Conjugate Gradient Stabilized method; \texttt{BICGSTAB} the Bi-Conjugate Gradient Stabilized method;
\texttt{BICGSTABL} the Bi-Conjugate Gradient Stabilized method with restarting; \texttt{BICGSTABL} the Bi-Conjugate Gradient Stabilized method with restarting;
\texttt{RGMRES} the Generalized Minimal Residual method with restarting. Refer to the PSBLAS guide~\cite{PSBLASGUIDE} for further information. \\ \hline \texttt{RGMRES} the Generalized Minimal Residual method with restarting. Refer to the PSBLAS guide~\cite{PSBLASGUIDE} for further information. \\ \hline
\fortinline|'KRM_KPREC'| & \fortinline|character(len=*)| & Table~\ref{tab:precinit} & \fortinline|'BJAC'| & The one-level preconditioners from the Table~\ref{tab:precinit} can be used for the coarse Krylov solver. \\ \hline \fortinline|'KRM_KPREC'| & \fortinline|character(len=*)| & Table~\ref{tab:precinit} & \fortinline|'BJAC'| & The one-level preconditioners from the Table~\ref{tab:precinit} can be used for the coarse Krylov solver.\\ \hline
\ifpdf \ifpdf
\phantomcaption \phantomcaption
\end{tabular} \end{tabular}

Loading…
Cancel
Save