Added different coeff. generation functions for test

merge-amgext
Cirdans-Home 4 years ago
parent 606f4e9567
commit 686612628e

@ -1,4 +1,4 @@
AMGDIR=../.. AMGDIR=../../..
AMGINCDIR=$(AMGDIR)/include AMGINCDIR=$(AMGDIR)/include
include $(AMGINCDIR)/Make.inc.amg4psblas include $(AMGINCDIR)/Make.inc.amg4psblas
AMGMODDIR=$(AMGDIR)/modules AMGMODDIR=$(AMGDIR)/modules
@ -11,20 +11,20 @@ EXEDIR=./runs
all: amg_s_pde3d amg_d_pde3d amg_s_pde2d amg_d_pde2d all: amg_s_pde3d amg_d_pde3d amg_s_pde2d amg_d_pde2d
amg_d_pde3d: amg_d_pde3d.o data_input.o amg_d_pde3d: amg_d_pde3d.o amg_d_genpde_mod.o amg_d_pde3d_base_mod.o amg_d_pde3d_exp_mod.o amg_d_pde3d_gauss_mod.o data_input.o
$(FLINK) $(LINKOPT) amg_d_pde3d.o data_input.o -o amg_d_pde3d $(AMG_LIBS) $(PSBLAS_LIBS) $(LDLIBS) $(FLINK) $(LINKOPT) amg_d_pde3d.o amg_d_genpde_mod.o amg_d_pde3d_base_mod.o amg_d_pde3d_exp_mod.o amg_d_pde3d_gauss_mod.o data_input.o -o amg_d_pde3d $(AMG_LIBS) $(PSBLAS_LIBS) $(LDLIBS)
/bin/mv amg_d_pde3d $(EXEDIR) /bin/mv amg_d_pde3d $(EXEDIR)
amg_s_pde3d: amg_s_pde3d.o data_input.o amg_s_pde3d: amg_s_pde3d.o amg_s_genpde_mod.o amg_s_pde3d_base_mod.o amg_s_pde3d_exp_mod.o amg_s_pde3d_gauss_mod.o data_input.o
$(FLINK) $(LINKOPT) amg_s_pde3d.o data_input.o -o amg_s_pde3d $(AMG_LIBS) $(PSBLAS_LIBS) $(LDLIBS) $(FLINK) $(LINKOPT) amg_s_pde3d.o amg_s_genpde_mod.o amg_s_pde3d_base_mod.o amg_s_pde3d_exp_mod.o amg_s_pde3d_gauss_mod.o data_input.o -o amg_s_pde3d $(AMG_LIBS) $(PSBLAS_LIBS) $(LDLIBS)
/bin/mv amg_s_pde3d $(EXEDIR) /bin/mv amg_s_pde3d $(EXEDIR)
amg_d_pde2d: amg_d_pde2d.o data_input.o amg_d_pde2d: amg_d_pde2d.o amg_d_genpde_mod.o amg_d_pde2d_base_mod.o amg_d_pde2d_exp_mod.o amg_d_pde2d_box_mod.o data_input.o
$(FLINK) $(LINKOPT) amg_d_pde2d.o data_input.o -o amg_d_pde2d $(AMG_LIBS) $(PSBLAS_LIBS) $(LDLIBS) $(FLINK) $(LINKOPT) amg_d_pde2d.o amg_d_genpde_mod.o amg_d_pde2d_base_mod.o amg_d_pde2d_exp_mod.o amg_d_pde2d_box_mod.o data_input.o -o amg_d_pde2d $(AMG_LIBS) $(PSBLAS_LIBS) $(LDLIBS)
/bin/mv amg_d_pde2d $(EXEDIR) /bin/mv amg_d_pde2d $(EXEDIR)
amg_s_pde2d: amg_s_pde2d.o data_input.o amg_s_pde2d: amg_s_pde2d.o amg_s_genpde_mod.o amg_s_pde2d_base_mod.o amg_s_pde2d_exp_mod.o amg_s_pde2d_box_mod.o data_input.o
$(FLINK) $(LINKOPT) amg_s_pde2d.o data_input.o -o amg_s_pde2d $(AMG_LIBS) $(PSBLAS_LIBS) $(LDLIBS) $(FLINK) $(LINKOPT) amg_s_pde2d.o amg_s_genpde_mod.o amg_s_pde2d_base_mod.o amg_s_pde2d_exp_mod.o amg_s_pde2d_box_mod.o data_input.o -o amg_s_pde2d $(AMG_LIBS) $(PSBLAS_LIBS) $(LDLIBS)
/bin/mv amg_s_pde2d $(EXEDIR) /bin/mv amg_s_pde2d $(EXEDIR)
amg_d_pde3d_rebld: amg_d_pde3d_rebld.o data_input.o amg_d_pde3d_rebld: amg_d_pde3d_rebld.o data_input.o
@ -33,6 +33,11 @@ amg_d_pde3d_rebld: amg_d_pde3d_rebld.o data_input.o
amg_d_pde3d.o amg_s_pde3d.o amg_d_pde2d.o amg_s_pde2d.o: data_input.o amg_d_pde3d.o amg_s_pde3d.o amg_d_pde2d.o amg_s_pde2d.o: data_input.o
amg_d_pde3d.o: amg_d_genpde_mod.o amg_d_pde3d_base_mod.o amg_d_pde3d_exp_mod.o amg_d_pde3d_gauss_mod.o
amg_s_pde3d.o: amg_s_genpde_mod.o amg_s_pde3d_base_mod.o amg_s_pde3d_exp_mod.o amg_s_pde3d_gauss_mod.o
amg_d_pde2d.o: amg_d_genpde_mod.o amg_d_pde2d_base_mod.o amg_d_pde2d_exp_mod.o amg_d_pde2d_box_mod.o
amg_s_pde2d.o: amg_s_genpde_mod.o amg_s_pde2d_base_mod.o amg_s_pde2d_exp_mod.o amg_s_pde2d_box_mod.o
check: all check: all
cd runs && ./amg_d_pde2d <amg_pde2d.inp && ./amg_s_pde2d<amg_pde2d.inp cd runs && ./amg_d_pde2d <amg_pde2d.inp && ./amg_s_pde2d<amg_pde2d.inp
@ -45,6 +50,3 @@ verycleanlib:
(cd ../..; make veryclean) (cd ../..; make veryclean)
lib: lib:
(cd ../../; make library) (cd ../../; make library)

@ -0,0 +1,857 @@
module amg_d_genpde_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero,&
& psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
interface
function d_func_3d(x,y,z) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
end function d_func_3d
end interface
interface amg_gen_pde3d
module procedure amg_d_gen_pde3d
end interface amg_gen_pde3d
interface
function d_func_2d(x,y) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
end function d_func_2d
end interface
interface amg_gen_pde2d
module procedure amg_d_gen_pde2d
end interface amg_gen_pde2d
contains
function d_null_func_2d(x,y) result(val)
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
val = dzero
end function d_null_func_2d
function d_null_func_3d(x,y,z) result(val)
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
val = dzero
end function d_null_func_3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine amg_d_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,partition, nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! d a1 d(u) d a1 d(u) d a1 d(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dx dx dy dy dz dz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: info
type(psb_ctxt_type) :: ctxt
character :: afmt*5
procedure(d_func_3d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 3D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(3), npp, minfo
integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz
integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=dzero,one=done,zero=dzero
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'd_create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_3d
end if
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
deltah = done/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.0_psb_dpk_* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_*idim)*idim*idim
n = m
nnz = 7*((n+np-1)/np)
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 3-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,3,npdims,info)
npx = npdims(1)
npy = npdims(2)
npz = npdims(3)
allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0)
! Now let's split the 3D cube in hexahedra
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
call dist1Didx(bndz,idim,npz)
mynz = bndz(iamz+1)-bndz(iamz)
! How many indices do I own?
nlr = mynx*myny*mynz
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
do k=bndz(iamz),bndz(iamz+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,k,idim,idim,idim)
end do
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny,mynz
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ctxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim)
! x, y, z coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=(2*done)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=dzero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ctxt)
return
end if
return
end subroutine amg_d_gen_pde3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine amg_d_gen_pde2d(ctxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info,f,amold,vmold,partition, nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! d d(u) d d(u) b1 d(u) b2 d(u)
! - -- a1 ---- - -- a1 ---- + ----- + ------ + c u = f
! dx dx dy dy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_2d) :: b1,b2,c,a1,a2,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: info
type(psb_ctxt_type) :: ctxt
character :: afmt*5
procedure(d_func_2d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 2D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(2), npp, minfo
integer(psb_ipk_) :: npx,npy,iamx,iamy,mynx,myny
integer(psb_ipk_), allocatable :: bndx(:),bndy(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2, dd
real(psb_dpk_), parameter :: rhs=0.d0,one=done,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_2d
end if
deltah = done/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.0_psb_dpk_* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_)*idim*idim
n = m
nnz = 7*((n+np-1)/np)
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 2-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,2,npdims,info)
npx = npdims(1)
npy = npdims(2)
allocate(bndx(0:npx),bndy(0:npy))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iam,npx,npy,base=0)
! Now let's split the 2D square in rectangles
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
! How many indices do I own?
nlr = mynx*myny
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,idim,idim)
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ctxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,glob_row,idim,idim)
! x, y coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=(2*done)*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
call ijk2idx(icol(icoeff),ix,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,done)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(done,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=dzero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ctxt)
return
end if
return
end subroutine amg_d_gen_pde2d
end module amg_d_genpde_mod

@ -63,491 +63,21 @@
! 3. A 2D distribution in which the unit square is partitioned ! 3. A 2D distribution in which the unit square is partitioned
! into rectangles, each one assigned to a process. ! into rectangles, each one assigned to a process.
! !
module amg_d_pde2d_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero,&
& psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
interface
function d_func_2d(x,y) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
end function d_func_2d
end interface
interface amg_gen_pde2d
module procedure amg_d_gen_pde2d
end interface amg_gen_pde2d
contains
function d_null_func_2d(x,y) result(val)
real(psb_dpk_), intent(in) :: x,y
real(psb_dpk_) :: val
val = dzero
end function d_null_func_2d
!
! functions parametrizing the differential equation
!
!
! Note: b1 and b2 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2 functions to e.g. done/sqrt((2*done))
!
function b1(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y
b1=dzero
end function b1
function b2(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y
b2=dzero
end function b2
function c(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y
c=0.d0
end function c
function a1(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y
a1=done/80
end function a1
function a2(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y
a2=done/80
end function a2
function g(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = exp(-y**2)
end if
end function g
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine amg_d_gen_pde2d(ctxt,idim,a,bv,xv,desc_a,afmt,info,&
& f,amold,vmold,imold,partition,nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: info
character(len=*) :: afmt
procedure(d_func_2d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 2D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(2), npp, minfo
integer(psb_ipk_) :: npx,npy,iamx,iamy,mynx,myny
integer(psb_ipk_), allocatable :: bndx(:),bndy(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=dzero,one=done,zero=dzero
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_2d
end if
deltah = done/(idim+1)
sqdeltah = deltah*deltah
deltah2 = (2*done)* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_)*idim*idim
n = m
nnz = 7*((n+np-1)/np)
if (iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 2-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,2,npdims,info)
npx = npdims(1)
npy = npdims(2)
allocate(bndx(0:npx),bndy(0:npy))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iam,npx,npy,base=0)
! Now let's split the 2D square in rectangles
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
! How many indices do I own?
nlr = mynx*myny
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,idim,idim)
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ctxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,glob_row,idim,idim)
! x, y coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=(2*done)*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
call ijk2idx(icol(icoeff),ix,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,done)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(done,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=dzero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ctxt,err_act)
return
end subroutine amg_d_gen_pde2d
end module amg_d_pde2d_mod
program amg_d_pde2d program amg_d_pde2d
use psb_base_mod use psb_base_mod
use amg_prec_mod use amg_prec_mod
use psb_krylov_mod use psb_krylov_mod
use psb_util_mod use psb_util_mod
use data_input use data_input
use amg_d_pde2d_mod use amg_d_pde2d_base_mod
use amg_d_pde2d_exp_mod
use amg_d_pde2d_box_mod
use amg_d_genpde_mod
implicit none implicit none
! input parameters ! input parameters
character(len=20) :: kmethd, ptype character(len=20) :: kmethd, ptype
character(len=5) :: afmt character(len=5) :: afmt, pdecoeff
integer(psb_ipk_) :: idim integer(psb_ipk_) :: idim
integer(psb_epk_) :: system_size integer(psb_epk_) :: system_size
@ -663,21 +193,36 @@ program amg_d_pde2d
! Hello world ! Hello world
! !
if (iam == psb_root_) then if (iam == psb_root_) then
write(*,*) 'Welcome to MLD2P4 version: ',amg_version_string_ write(*,*) 'Welcome to AMG4PSBLAS version: ',amg_version_string_
write(*,*) 'This is the ',trim(name),' sample program' write(*,*) 'This is the ',trim(name),' sample program'
end if end if
! !
! get parameters ! get parameters
! !
call get_parms(ctxt,afmt,idim,s_choice,p_choice) call get_parms(ctxt,afmt,idim,s_choice,p_choice,pdecoeff)
! !
! allocate and fill in the coefficient matrix, rhs and initial guess ! allocate and fill in the coefficient matrix, rhs and initial guess
! !
call psb_barrier(ctxt) call psb_barrier(ctxt)
t1 = psb_wtime() t1 = psb_wtime()
call amg_gen_pde2d(ctxt,idim,a,b,x,desc_a,afmt,info) select case(psb_toupper(trim(pdecoeff)))
case("CONST")
call amg_gen_pde2d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info)
case("EXP")
call amg_gen_pde2d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1_exp,a2_exp,b1_exp,b2_exp,c_exp,g_exp,info)
case("BOX")
call amg_gen_pde2d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1_box,a2_box,b1_box,b2_box,c_box,g_box,info)
case default
info=psb_err_from_subroutine_
ch_err='amg_gen_pdecoeff'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end select
call psb_barrier(ctxt) call psb_barrier(ctxt)
t2 = psb_wtime() - t1 t2 = psb_wtime() - t1
if(info /= psb_success_) then if(info /= psb_success_) then
@ -687,6 +232,8 @@ program amg_d_pde2d
goto 9999 goto 9999
end if end if
if (iam == psb_root_) &
& write(psb_out_unit,'("PDE Coefficients : ",a)')pdecoeff
if (iam == psb_root_) & if (iam == psb_root_) &
& write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2 & write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) & if (iam == psb_root_) &
@ -856,6 +403,7 @@ program amg_d_pde2d
if (iam == psb_root_) then if (iam == psb_root_) then
write(psb_out_unit,'("Computed solution on ",i8," processors")') np write(psb_out_unit,'("Computed solution on ",i8," processors")') np
write(psb_out_unit,'("Linear system size : ",i12)') system_size write(psb_out_unit,'("Linear system size : ",i12)') system_size
write(psb_out_unit,'("PDE Coefficients : ",a)') trim(pdecoeff)
write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd) write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd)
write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr) write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr)
write(psb_out_unit,'("Iterations to convergence : ",i12)') iter write(psb_out_unit,'("Iterations to convergence : ",i12)') iter
@ -904,7 +452,7 @@ contains
! !
! get iteration parameters from standard input ! get iteration parameters from standard input
! !
subroutine get_parms(ctxt,afmt,idim,solve,prec) subroutine get_parms(ctxt,afmt,idim,solve,prec,pdecoeff)
implicit none implicit none
@ -913,6 +461,7 @@ contains
character(len=*) :: afmt character(len=*) :: afmt
type(solverdata) :: solve type(solverdata) :: solve
type(precdata) :: prec type(precdata) :: prec
character(len=*) :: pdecoeff
integer(psb_ipk_) :: iam, nm, np, inp_unit integer(psb_ipk_) :: iam, nm, np, inp_unit
character(len=1024) :: filename character(len=1024) :: filename
@ -937,6 +486,7 @@ contains
! !
call read_data(afmt,inp_unit) ! matrix storage format call read_data(afmt,inp_unit) ! matrix storage format
call read_data(idim,inp_unit) ! Discretization grid size call read_data(idim,inp_unit) ! Discretization grid size
call read_data(pdecoeff,inp_unit) ! PDE Coefficients
! Krylov solver data ! Krylov solver data
call read_data(solve%kmethd,inp_unit) ! Krylov solver call read_data(solve%kmethd,inp_unit) ! Krylov solver
call read_data(solve%istopc,inp_unit) ! stopping criterion call read_data(solve%istopc,inp_unit) ! stopping criterion
@ -998,6 +548,7 @@ contains
call psb_bcast(ctxt,afmt) call psb_bcast(ctxt,afmt)
call psb_bcast(ctxt,idim) call psb_bcast(ctxt,idim)
call psb_bcast(ctxt,pdecoeff)
call psb_bcast(ctxt,solve%kmethd) call psb_bcast(ctxt,solve%kmethd)
call psb_bcast(ctxt,solve%istopc) call psb_bcast(ctxt,solve%istopc)

@ -0,0 +1,53 @@
module amg_d_pde2d_base_mod
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_), save, private :: epsilon=done/80
contains
subroutine pde_set_parm(dat)
real(psb_dpk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y
b1 = dzero/1.414_psb_dpk_
end function b1
function b2(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y
b2 = dzero/1.414_psb_dpk_
end function b2
function c(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y
c = dzero
end function c
function a1(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y
a1=done*epsilon
end function a1
function a2(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y
a2=done*epsilon
end function a2
function g(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = done
end if
end function g
end module amg_d_pde2d_base_mod

@ -0,0 +1,53 @@
module amg_d_pde2d_box_mod
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_), save, private :: epsilon=done/80
contains
subroutine pde_set_parm(dat)
real(psb_dpk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_box(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: b1_box
real(psb_dpk_), intent(in) :: x,y
b1_box = done/1.414_psb_dpk_
end function b1_box
function b2_box(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: b2_box
real(psb_dpk_), intent(in) :: x,y
b2_box = done/1.414_psb_dpk_
end function b2_box
function c_box(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: c_box
real(psb_dpk_), intent(in) :: x,y
c_box = dzero
end function c_box
function a1_box(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: a1_box
real(psb_dpk_), intent(in) :: x,y
a1_box=done*epsilon
end function a1_box
function a2_box(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: a2_box
real(psb_dpk_), intent(in) :: x,y
a2_box=done*epsilon
end function a2_box
function g_box(x,y)
use psb_base_mod, only : psb_dpk_, dzero, done
real(psb_dpk_) :: g_box
real(psb_dpk_), intent(in) :: x,y
g_box = dzero
if (x == done) then
g_box = done
else if (x == dzero) then
g_box = done
end if
end function g_box
end module amg_d_pde2d_box_mod

@ -0,0 +1,53 @@
module amg_d_pde2d_exp_mod
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_), save, private :: epsilon=done/80
contains
subroutine pde_set_parm(dat)
real(psb_dpk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_exp(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: b1_exp
real(psb_dpk_), intent(in) :: x,y
b1_exp = dzero
end function b1_exp
function b2_exp(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: b2_exp
real(psb_dpk_), intent(in) :: x,y
b2_exp = dzero
end function b2_exp
function c_exp(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: c_exp
real(psb_dpk_), intent(in) :: x,y
c_exp = dzero
end function c_exp
function a1_exp(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: a1_exp
real(psb_dpk_), intent(in) :: x,y
a1=done*epsilon*exp(-(x+y))
end function a1_exp
function a2_exp(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: a2_exp
real(psb_dpk_), intent(in) :: x,y
a2=done*epsilon*exp(-(x+y))
end function a2_exp
function g_exp(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: g_exp
real(psb_dpk_), intent(in) :: x,y
g_exp = dzero
if (x == done) then
g_exp = done
else if (x == dzero) then
g_exp = done
end if
end function g_exp
end module amg_d_pde2d_exp_mod

@ -64,530 +64,21 @@
! 3. A 3D distribution in which the unit cube is partitioned ! 3. A 3D distribution in which the unit cube is partitioned
! into subcubes, each one assigned to a process. ! into subcubes, each one assigned to a process.
! !
module amg_d_pde3d_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_lpk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero,&
& psb_d_base_sparse_mat, psb_d_base_vect_type, &
& psb_i_base_vect_type, psb_l_base_vect_type
interface
function d_func_3d(x,y,z) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
end function d_func_3d
end interface
interface amg_gen_pde3d
module procedure amg_d_gen_pde3d
end interface amg_gen_pde3d
contains
function d_null_func_3d(x,y,z) result(val)
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
val = dzero
end function d_null_func_3d
!
! functions parametrizing the differential equation
!
!
! Note: b1, b2 and b3 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2/B3 functions to e.g. done/sqrt((3*done))
!
function b1(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y,z
b1=dzero
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y,z
b2=dzero
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b3
real(psb_dpk_), intent(in) :: x,y,z
b3=dzero
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y,z
c=dzero
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y,z
a1=done/80
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y,z
a2=done/80
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: a3
real(psb_dpk_), intent(in) :: x,y,z
a3=done/80
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y,z
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = exp(y**2-z**2)
end if
end function g
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine amg_d_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,info,&
& f,amold,vmold,imold,partition,nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: info
character(len=*) :: afmt
procedure(d_func_3d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 3D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(3), npp, minfo
integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz
integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=dzero,one=done,zero=dzero
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_3d
end if
deltah = done/(idim+1)
sqdeltah = deltah*deltah
deltah2 = (2*done)* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_*idim)*idim*idim
n = m
nnz = 7*((n+np-1)/np)
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 3-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,3,npdims,info)
npx = npdims(1)
npy = npdims(2)
npz = npdims(3)
allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0)
! Now let's split the 3D cube in hexahedra
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
call dist1Didx(bndz,idim,npz)
mynz = bndz(iamz+1)-bndz(iamz)
! How many indices do I own?
nlr = mynx*myny*mynz
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
do k=bndz(iamz),bndz(iamz+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,k,idim,idim,idim)
end do
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny,mynz
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ctxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim)
! x, y, z coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=(2*done)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=dzero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ctxt,err_act)
return
end subroutine amg_d_gen_pde3d
end module amg_d_pde3d_mod
program amg_d_pde3d program amg_d_pde3d
use psb_base_mod use psb_base_mod
use amg_prec_mod use amg_prec_mod
use psb_krylov_mod use psb_krylov_mod
use psb_util_mod use psb_util_mod
use data_input use data_input
use amg_d_pde3d_mod use amg_d_pde3d_base_mod
use amg_d_pde3d_exp_mod
use amg_d_pde3d_gauss_mod
use amg_d_genpde_mod
implicit none implicit none
! input parameters ! input parameters
character(len=20) :: kmethd, ptype character(len=20) :: kmethd, ptype
character(len=5) :: afmt character(len=5) :: afmt, pdecoeff
integer(psb_ipk_) :: idim integer(psb_ipk_) :: idim
integer(psb_epk_) :: system_size integer(psb_epk_) :: system_size
@ -703,14 +194,14 @@ program amg_d_pde3d
! Hello world ! Hello world
! !
if (iam == psb_root_) then if (iam == psb_root_) then
write(*,*) 'Welcome to MLD2P4 version: ',amg_version_string_ write(*,*) 'Welcome to AMG4PSBLAS version: ',amg_version_string_
write(*,*) 'This is the ',trim(name),' sample program' write(*,*) 'This is the ',trim(name),' sample program'
end if end if
! !
! get parameters ! get parameters
! !
call get_parms(ctxt,afmt,idim,s_choice,p_choice) call get_parms(ctxt,afmt,idim,s_choice,p_choice,pdecoeff)
! !
! allocate and fill in the coefficient matrix, rhs and initial guess ! allocate and fill in the coefficient matrix, rhs and initial guess
@ -718,7 +209,24 @@ program amg_d_pde3d
call psb_barrier(ctxt) call psb_barrier(ctxt)
t1 = psb_wtime() t1 = psb_wtime()
call amg_gen_pde3d(ctxt,idim,a,b,x,desc_a,afmt,info) select case(psb_toupper(trim(pdecoeff)))
case("CONST")
call amg_gen_pde3d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info)
case("EXP")
call amg_gen_pde3d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1_exp,a2_exp,a3_exp,b1_exp,b2_exp,b3_exp,c_exp,g_exp,info)
case("GAUSS")
call amg_gen_pde3d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1_gauss,a2_gauss,a3_gauss,b1_gauss,b2_gauss,b3_gauss,c_gauss,g_gauss,info)
case default
info=psb_err_from_subroutine_
ch_err='amg_gen_pdecoeff'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end select
call psb_barrier(ctxt) call psb_barrier(ctxt)
t2 = psb_wtime() - t1 t2 = psb_wtime() - t1
if(info /= psb_success_) then if(info /= psb_success_) then
@ -728,6 +236,8 @@ program amg_d_pde3d
goto 9999 goto 9999
end if end if
if (iam == psb_root_) &
& write(psb_out_unit,'("PDE Coefficients : ",a)')pdecoeff
if (iam == psb_root_) & if (iam == psb_root_) &
& write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2 & write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) & if (iam == psb_root_) &
@ -897,6 +407,7 @@ program amg_d_pde3d
if (iam == psb_root_) then if (iam == psb_root_) then
write(psb_out_unit,'("Computed solution on ",i8," processors")') np write(psb_out_unit,'("Computed solution on ",i8," processors")') np
write(psb_out_unit,'("Linear system size : ",i12)') system_size write(psb_out_unit,'("Linear system size : ",i12)') system_size
write(psb_out_unit,'("PDE Coefficients : ",a)') trim(pdecoeff)
write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd) write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd)
write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr) write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr)
write(psb_out_unit,'("Iterations to convergence : ",i12)') iter write(psb_out_unit,'("Iterations to convergence : ",i12)') iter
@ -945,7 +456,7 @@ contains
! !
! get iteration parameters from standard input ! get iteration parameters from standard input
! !
subroutine get_parms(ctxt,afmt,idim,solve,prec) subroutine get_parms(ctxt,afmt,idim,solve,prec,pdecoeff)
implicit none implicit none
@ -954,6 +465,7 @@ contains
character(len=*) :: afmt character(len=*) :: afmt
type(solverdata) :: solve type(solverdata) :: solve
type(precdata) :: prec type(precdata) :: prec
character(len=*) :: pdecoeff
integer(psb_ipk_) :: iam, nm, np, inp_unit integer(psb_ipk_) :: iam, nm, np, inp_unit
character(len=1024) :: filename character(len=1024) :: filename
@ -978,6 +490,7 @@ contains
! !
call read_data(afmt,inp_unit) ! matrix storage format call read_data(afmt,inp_unit) ! matrix storage format
call read_data(idim,inp_unit) ! Discretization grid size call read_data(idim,inp_unit) ! Discretization grid size
call read_data(pdecoeff,inp_unit) ! PDE Coefficients
! Krylov solver data ! Krylov solver data
call read_data(solve%kmethd,inp_unit) ! Krylov solver call read_data(solve%kmethd,inp_unit) ! Krylov solver
call read_data(solve%istopc,inp_unit) ! stopping criterion call read_data(solve%istopc,inp_unit) ! stopping criterion
@ -1039,6 +552,7 @@ contains
call psb_bcast(ctxt,afmt) call psb_bcast(ctxt,afmt)
call psb_bcast(ctxt,idim) call psb_bcast(ctxt,idim)
call psb_bcast(ctxt,pdecoeff)
call psb_bcast(ctxt,solve%kmethd) call psb_bcast(ctxt,solve%kmethd)
call psb_bcast(ctxt,solve%istopc) call psb_bcast(ctxt,solve%istopc)

@ -0,0 +1,65 @@
module amg_d_pde3d_base_mod
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_), save, private :: epsilon=done/80
contains
subroutine pde_set_parm(dat)
real(psb_dpk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1(x,y,z)
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y,z
b1=done/sqrt(3.0_psb_dpk_)
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y,z
b2=done/sqrt(3.0_psb_dpk_)
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_) :: b3
real(psb_dpk_), intent(in) :: x,y,z
b3=done/sqrt(3.0_psb_dpk_)
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y,z
c=dzero
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y,z
a1=epsilon
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y,z
a2=epsilon
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a3
real(psb_dpk_), intent(in) :: x,y,z
a3=epsilon
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y,z
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = done
end if
end function g
end module amg_d_pde3d_base_mod

@ -0,0 +1,65 @@
module amg_d_pde3d_exp_mod
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_), save, private :: epsilon=done/160
contains
subroutine pde_set_parm(dat)
real(psb_dpk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_exp(x,y,z)
use psb_base_mod, only : psb_dpk_, dzero
real(psb_dpk_) :: b1_exp
real(psb_dpk_), intent(in) :: x,y,z
b1_exp=dzero/sqrt(3.0_psb_dpk_)
end function b1_exp
function b2_exp(x,y,z)
use psb_base_mod, only : psb_dpk_, dzero
real(psb_dpk_) :: b2_exp
real(psb_dpk_), intent(in) :: x,y,z
b2_exp=dzero/sqrt(3.0_psb_dpk_)
end function b2_exp
function b3_exp(x,y,z)
use psb_base_mod, only : psb_dpk_, dzero
real(psb_dpk_) :: b3_exp
real(psb_dpk_), intent(in) :: x,y,z
b3_exp=dzero/sqrt(3.0_psb_dpk_)
end function b3_exp
function c_exp(x,y,z)
use psb_base_mod, only : psb_dpk_, dzero
real(psb_dpk_) :: c_exp
real(psb_dpk_), intent(in) :: x,y,z
c_exp=dzero
end function c_exp
function a1_exp(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1_exp
real(psb_dpk_), intent(in) :: x,y,z
a1_exp=epsilon*exp(-(x+y+z))
end function a1_exp
function a2_exp(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2_exp
real(psb_dpk_), intent(in) :: x,y,z
a2_exp=epsilon*exp(-(x+y+z))
end function a2_exp
function a3_exp(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a3_exp
real(psb_dpk_), intent(in) :: x,y,z
a3_exp=epsilon*exp(-(x+y+z))
end function a3_exp
function g_exp(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: g_exp
real(psb_dpk_), intent(in) :: x,y,z
g_exp = dzero
if (x == done) then
g_exp = done
else if (x == dzero) then
g_exp = done
end if
end function g_exp
end module amg_d_pde3d_exp_mod

@ -0,0 +1,65 @@
module amg_d_pde3d_gauss_mod
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_), save, private :: epsilon=done/80
contains
subroutine pde_set_parm(dat)
real(psb_dpk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_gauss(x,y,z)
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_) :: b1_gauss
real(psb_dpk_), intent(in) :: x,y,z
b1_gauss=done/sqrt(3.0_psb_dpk_)-2*x*exp(-(x**2+y**2+z**2))
end function b1_gauss
function b2_gauss(x,y,z)
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_) :: b2_gauss
real(psb_dpk_), intent(in) :: x,y,z
b2_gauss=done/sqrt(3.0_psb_dpk_)-2*y*exp(-(x**2+y**2+z**2))
end function b2_gauss
function b3_gauss(x,y,z)
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_) :: b3_gauss
real(psb_dpk_), intent(in) :: x,y,z
b3_gauss=done/sqrt(3.0_psb_dpk_)-2*z*exp(-(x**2+y**2+z**2))
end function b3_gauss
function c_gauss(x,y,z)
use psb_base_mod, only : psb_dpk_, dzero
real(psb_dpk_) :: c_gauss
real(psb_dpk_), intent(in) :: x,y,z
c=dzero
end function c_gauss
function a1_gauss(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1_gauss
real(psb_dpk_), intent(in) :: x,y,z
a1_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a1_gauss
function a2_gauss(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2_gauss
real(psb_dpk_), intent(in) :: x,y,z
a2_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a2_gauss
function a3_gauss(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a3_gauss
real(psb_dpk_), intent(in) :: x,y,z
a3_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a3_gauss
function g_gauss(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_) :: g_gauss
real(psb_dpk_), intent(in) :: x,y,z
g_gauss = dzero
if (x == done) then
g_gauss = done
else if (x == dzero) then
g_gauss = done
end if
end function g_gauss
end module amg_d_pde3d_gauss_mod

@ -0,0 +1,857 @@
module amg_s_genpde_mod
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
& psb_sspmat_type, psb_s_vect_type, szero,&
& psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
interface
function s_func_3d(x,y,z) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
end function s_func_3d
end interface
interface amg_gen_pde3d
module procedure amg_s_gen_pde3d
end interface amg_gen_pde3d
interface
function s_func_2d(x,y) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
end function s_func_2d
end interface
interface amg_gen_pde2d
module procedure amg_s_gen_pde2d
end interface amg_gen_pde2d
contains
function s_null_func_2d(x,y) result(val)
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
val = szero
end function s_null_func_2d
function s_null_func_3d(x,y,z) result(val)
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
val = szero
end function s_null_func_3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine amg_s_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,partition, nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! d a1 d(u) d a1 d(u) d a1 d(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dx dx dy dy dz dz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(s_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: info
type(psb_ctxt_type) :: ctxt
character :: afmt*5
procedure(s_func_3d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 3D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(3), npp, minfo
integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz
integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=szero,one=sone,zero=szero
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 's_create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_3d
end if
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
deltah = sone/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.0_psb_spk_* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_*idim)*idim*idim
n = m
nnz = 7*((n+np-1)/np)
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 3-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,3,npdims,info)
npx = npdims(1)
npy = npdims(2)
npz = npdims(3)
allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0)
! Now let's split the 3D cube in hexahedra
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
call dist1Didx(bndz,idim,npz)
mynz = bndz(iamz+1)-bndz(iamz)
! How many indices do I own?
nlr = mynx*myny*mynz
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
do k=bndz(iamz),bndz(iamz+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,k,idim,idim,idim)
end do
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny,mynz
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ctxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim)
! x, y, z coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,szero,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,szero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=(2*sone)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,sone)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,sone,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(sone,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=szero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ctxt)
return
end if
return
end subroutine amg_s_gen_pde3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine amg_s_gen_pde2d(ctxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info,f,amold,vmold,partition, nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! d d(u) d d(u) b1 d(u) b2 d(u)
! - -- a1 ---- - -- a1 ---- + ----- + ------ + c u = f
! dx dx dy dy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(s_func_2d) :: b1,b2,c,a1,a2,g
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: info
type(psb_ctxt_type) :: ctxt
character :: afmt*5
procedure(s_func_2d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 2D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(2), npp, minfo
integer(psb_ipk_) :: npx,npy,iamx,iamy,mynx,myny
integer(psb_ipk_), allocatable :: bndx(:),bndy(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2, dd
real(psb_spk_), parameter :: rhs=0.d0,one=sone,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_2d
end if
deltah = sone/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.0_psb_spk_* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_)*idim*idim
n = m
nnz = 7*((n+np-1)/np)
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 2-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,2,npdims,info)
npx = npdims(1)
npy = npdims(2)
allocate(bndx(0:npx),bndy(0:npy))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iam,npx,npy,base=0)
! Now let's split the 2D square in rectangles
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
! How many indices do I own?
nlr = mynx*myny
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,idim,idim)
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ctxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,glob_row,idim,idim)
! x, y coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(szero,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,szero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=(2*sone)*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
call ijk2idx(icol(icoeff),ix,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,sone)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(sone,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=szero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ctxt)
return
end if
return
end subroutine amg_s_gen_pde2d
end module amg_s_genpde_mod

@ -63,491 +63,21 @@
! 3. A 2D distribution in which the unit square is partitioned ! 3. A 2D distribution in which the unit square is partitioned
! into rectangles, each one assigned to a process. ! into rectangles, each one assigned to a process.
! !
module amg_s_pde2d_mod
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
& psb_sspmat_type, psb_s_vect_type, szero,&
& psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
interface
function s_func_2d(x,y) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
end function s_func_2d
end interface
interface amg_gen_pde2d
module procedure amg_s_gen_pde2d
end interface amg_gen_pde2d
contains
function s_null_func_2d(x,y) result(val)
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
val = szero
end function s_null_func_2d
!
! functions parametrizing the differential equation
!
!
! Note: b1 and b2 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2 functions to e.g. sone/sqrt((2*sone))
!
function b1(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y
b1=szero
end function b1
function b2(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y
b2=szero
end function b2
function c(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y
c=0.d0
end function c
function a1(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y
a1=sone/80
end function a1
function a2(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y
a2=sone/80
end function a2
function g(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y
g = szero
if (x == sone) then
g = sone
else if (x == szero) then
g = exp(-y**2)
end if
end function g
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine amg_s_gen_pde2d(ctxt,idim,a,bv,xv,desc_a,afmt,info,&
& f,amold,vmold,imold,partition,nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: info
character(len=*) :: afmt
procedure(s_func_2d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 2D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(2), npp, minfo
integer(psb_ipk_) :: npx,npy,iamx,iamy,mynx,myny
integer(psb_ipk_), allocatable :: bndx(:),bndy(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=szero,one=sone,zero=szero
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_2d
end if
deltah = sone/(idim+1)
sqdeltah = deltah*deltah
deltah2 = (2*sone)* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_)*idim*idim
n = m
nnz = 7*((n+np-1)/np)
if (iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 2-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,2,npdims,info)
npx = npdims(1)
npy = npdims(2)
allocate(bndx(0:npx),bndy(0:npy))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iam,npx,npy,base=0)
! Now let's split the 2D square in rectangles
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
! How many indices do I own?
nlr = mynx*myny
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,idim,idim)
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ctxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,glob_row,idim,idim)
! x, y coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(szero,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,szero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=(2*sone)*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
call ijk2idx(icol(icoeff),ix,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,sone)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(sone,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=szero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ctxt,err_act)
return
end subroutine amg_s_gen_pde2d
end module amg_s_pde2d_mod
program amg_s_pde2d program amg_s_pde2d
use psb_base_mod use psb_base_mod
use amg_prec_mod use amg_prec_mod
use psb_krylov_mod use psb_krylov_mod
use psb_util_mod use psb_util_mod
use data_input use data_input
use amg_s_pde2d_mod use amg_s_pde2d_base_mod
use amg_s_pde2d_exp_mod
use amg_s_pde2d_box_mod
use amg_s_genpde_mod
implicit none implicit none
! input parameters ! input parameters
character(len=20) :: kmethd, ptype character(len=20) :: kmethd, ptype
character(len=5) :: afmt character(len=5) :: afmt, pdecoeff
integer(psb_ipk_) :: idim integer(psb_ipk_) :: idim
integer(psb_epk_) :: system_size integer(psb_epk_) :: system_size
@ -663,21 +193,36 @@ program amg_s_pde2d
! Hello world ! Hello world
! !
if (iam == psb_root_) then if (iam == psb_root_) then
write(*,*) 'Welcome to MLD2P4 version: ',amg_version_string_ write(*,*) 'Welcome to AMG4PSBLAS version: ',amg_version_string_
write(*,*) 'This is the ',trim(name),' sample program' write(*,*) 'This is the ',trim(name),' sample program'
end if end if
! !
! get parameters ! get parameters
! !
call get_parms(ctxt,afmt,idim,s_choice,p_choice) call get_parms(ctxt,afmt,idim,s_choice,p_choice,pdecoeff)
! !
! allocate and fill in the coefficient matrix, rhs and initial guess ! allocate and fill in the coefficient matrix, rhs and initial guess
! !
call psb_barrier(ctxt) call psb_barrier(ctxt)
t1 = psb_wtime() t1 = psb_wtime()
call amg_gen_pde2d(ctxt,idim,a,b,x,desc_a,afmt,info) select case(psb_toupper(trim(pdecoeff)))
case("CONST")
call amg_gen_pde2d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1,a2,b1,b2,c,g,info)
case("EXP")
call amg_gen_pde2d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1_exp,a2_exp,b1_exp,b2_exp,c_exp,g_exp,info)
case("BOX")
call amg_gen_pde2d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1_box,a2_box,b1_box,b2_box,c_box,g_box,info)
case default
info=psb_err_from_subroutine_
ch_err='amg_gen_pdecoeff'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end select
call psb_barrier(ctxt) call psb_barrier(ctxt)
t2 = psb_wtime() - t1 t2 = psb_wtime() - t1
if(info /= psb_success_) then if(info /= psb_success_) then
@ -687,6 +232,8 @@ program amg_s_pde2d
goto 9999 goto 9999
end if end if
if (iam == psb_root_) &
& write(psb_out_unit,'("PDE Coefficients : ",a)')pdecoeff
if (iam == psb_root_) & if (iam == psb_root_) &
& write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2 & write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) & if (iam == psb_root_) &
@ -856,6 +403,7 @@ program amg_s_pde2d
if (iam == psb_root_) then if (iam == psb_root_) then
write(psb_out_unit,'("Computed solution on ",i8," processors")') np write(psb_out_unit,'("Computed solution on ",i8," processors")') np
write(psb_out_unit,'("Linear system size : ",i12)') system_size write(psb_out_unit,'("Linear system size : ",i12)') system_size
write(psb_out_unit,'("PDE Coefficients : ",a)') trim(pdecoeff)
write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd) write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd)
write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr) write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr)
write(psb_out_unit,'("Iterations to convergence : ",i12)') iter write(psb_out_unit,'("Iterations to convergence : ",i12)') iter
@ -904,7 +452,7 @@ contains
! !
! get iteration parameters from standard input ! get iteration parameters from standard input
! !
subroutine get_parms(ctxt,afmt,idim,solve,prec) subroutine get_parms(ctxt,afmt,idim,solve,prec,pdecoeff)
implicit none implicit none
@ -913,6 +461,7 @@ contains
character(len=*) :: afmt character(len=*) :: afmt
type(solverdata) :: solve type(solverdata) :: solve
type(precdata) :: prec type(precdata) :: prec
character(len=*) :: pdecoeff
integer(psb_ipk_) :: iam, nm, np, inp_unit integer(psb_ipk_) :: iam, nm, np, inp_unit
character(len=1024) :: filename character(len=1024) :: filename
@ -937,6 +486,7 @@ contains
! !
call read_data(afmt,inp_unit) ! matrix storage format call read_data(afmt,inp_unit) ! matrix storage format
call read_data(idim,inp_unit) ! Discretization grid size call read_data(idim,inp_unit) ! Discretization grid size
call read_data(pdecoeff,inp_unit) ! PDE Coefficients
! Krylov solver data ! Krylov solver data
call read_data(solve%kmethd,inp_unit) ! Krylov solver call read_data(solve%kmethd,inp_unit) ! Krylov solver
call read_data(solve%istopc,inp_unit) ! stopping criterion call read_data(solve%istopc,inp_unit) ! stopping criterion
@ -998,6 +548,7 @@ contains
call psb_bcast(ctxt,afmt) call psb_bcast(ctxt,afmt)
call psb_bcast(ctxt,idim) call psb_bcast(ctxt,idim)
call psb_bcast(ctxt,pdecoeff)
call psb_bcast(ctxt,solve%kmethd) call psb_bcast(ctxt,solve%kmethd)
call psb_bcast(ctxt,solve%istopc) call psb_bcast(ctxt,solve%istopc)

@ -0,0 +1,53 @@
module amg_s_pde2d_base_mod
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_), save, private :: epsilon=sone/80
contains
subroutine pde_set_parm(dat)
real(psb_spk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y
b1 = szero/1.414_psb_spk_
end function b1
function b2(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y
b2 = szero/1.414_psb_spk_
end function b2
function c(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y
c = szero
end function c
function a1(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y
a1=sone*epsilon
end function a1
function a2(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y
a2=sone*epsilon
end function a2
function g(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y
g = szero
if (x == sone) then
g = sone
else if (x == szero) then
g = sone
end if
end function g
end module amg_s_pde2d_base_mod

@ -0,0 +1,53 @@
module amg_s_pde2d_box_mod
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_), save, private :: epsilon=sone/80
contains
subroutine pde_set_parm(dat)
real(psb_spk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_box(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: b1_box
real(psb_spk_), intent(in) :: x,y
b1_box = sone/1.414_psb_spk_
end function b1_box
function b2_box(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: b2_box
real(psb_spk_), intent(in) :: x,y
b2_box = sone/1.414_psb_spk_
end function b2_box
function c_box(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: c_box
real(psb_spk_), intent(in) :: x,y
c_box = szero
end function c_box
function a1_box(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: a1_box
real(psb_spk_), intent(in) :: x,y
a1_box=sone*epsilon
end function a1_box
function a2_box(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: a2_box
real(psb_spk_), intent(in) :: x,y
a2_box=sone*epsilon
end function a2_box
function g_box(x,y)
use psb_base_mod, only : psb_spk_, szero, sone
real(psb_spk_) :: g_box
real(psb_spk_), intent(in) :: x,y
g_box = szero
if (x == sone) then
g_box = sone
else if (x == szero) then
g_box = sone
end if
end function g_box
end module amg_s_pde2d_box_mod

@ -0,0 +1,53 @@
module amg_s_pde2d_exp_mod
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_), save, private :: epsilon=sone/80
contains
subroutine pde_set_parm(dat)
real(psb_spk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_exp(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: b1_exp
real(psb_spk_), intent(in) :: x,y
b1_exp = szero
end function b1_exp
function b2_exp(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: b2_exp
real(psb_spk_), intent(in) :: x,y
b2_exp = szero
end function b2_exp
function c_exp(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: c_exp
real(psb_spk_), intent(in) :: x,y
c_exp = szero
end function c_exp
function a1_exp(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: a1_exp
real(psb_spk_), intent(in) :: x,y
a1=sone*epsilon*exp(-(x+y))
end function a1_exp
function a2_exp(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: a2_exp
real(psb_spk_), intent(in) :: x,y
a2=sone*epsilon*exp(-(x+y))
end function a2_exp
function g_exp(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: g_exp
real(psb_spk_), intent(in) :: x,y
g_exp = szero
if (x == sone) then
g_exp = sone
else if (x == szero) then
g_exp = sone
end if
end function g_exp
end module amg_s_pde2d_exp_mod

@ -64,530 +64,21 @@
! 3. A 3D distribution in which the unit cube is partitioned ! 3. A 3D distribution in which the unit cube is partitioned
! into subcubes, each one assigned to a process. ! into subcubes, each one assigned to a process.
! !
module amg_s_pde3d_mod
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_lpk_, psb_desc_type,&
& psb_sspmat_type, psb_s_vect_type, szero,&
& psb_s_base_sparse_mat, psb_s_base_vect_type, &
& psb_i_base_vect_type, psb_l_base_vect_type
interface
function s_func_3d(x,y,z) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
end function s_func_3d
end interface
interface amg_gen_pde3d
module procedure amg_s_gen_pde3d
end interface amg_gen_pde3d
contains
function s_null_func_3d(x,y,z) result(val)
real(psb_spk_), intent(in) :: x,y,z
real(psb_spk_) :: val
val = szero
end function s_null_func_3d
!
! functions parametrizing the differential equation
!
!
! Note: b1, b2 and b3 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2/B3 functions to e.g. sone/sqrt((3*sone))
!
function b1(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y,z
b1=szero
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y,z
b2=szero
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b3
real(psb_spk_), intent(in) :: x,y,z
b3=szero
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y,z
c=szero
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y,z
a1=sone/80
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y,z
a2=sone/80
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: a3
real(psb_spk_), intent(in) :: x,y,z
a3=sone/80
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y,z
g = szero
if (x == sone) then
g = sone
else if (x == szero) then
g = exp(y**2-z**2)
end if
end function g
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine amg_s_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,info,&
& f,amold,vmold,imold,partition,nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: info
character(len=*) :: afmt
procedure(s_func_3d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 3D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(3), npp, minfo
integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz
integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=szero,one=sone,zero=szero
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_3d
end if
deltah = sone/(idim+1)
sqdeltah = deltah*deltah
deltah2 = (2*sone)* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_*idim)*idim*idim
n = m
nnz = 7*((n+np-1)/np)
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 3-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,3,npdims,info)
npx = npdims(1)
npy = npdims(2)
npz = npdims(3)
allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0)
! Now let's split the 3D cube in hexahedra
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
call dist1Didx(bndz,idim,npz)
mynz = bndz(iamz+1)-bndz(iamz)
! How many indices do I own?
nlr = mynx*myny*mynz
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
do k=bndz(iamz),bndz(iamz+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,k,idim,idim,idim)
end do
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny,mynz
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ctxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim)
! x, y, z coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,szero,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,szero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=(2*sone)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,sone)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,sone,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(sone,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=szero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ctxt,err_act)
return
end subroutine amg_s_gen_pde3d
end module amg_s_pde3d_mod
program amg_s_pde3d program amg_s_pde3d
use psb_base_mod use psb_base_mod
use amg_prec_mod use amg_prec_mod
use psb_krylov_mod use psb_krylov_mod
use psb_util_mod use psb_util_mod
use data_input use data_input
use amg_s_pde3d_mod use amg_s_pde3d_base_mod
use amg_s_pde3d_exp_mod
use amg_s_pde3d_gauss_mod
use amg_s_genpde_mod
implicit none implicit none
! input parameters ! input parameters
character(len=20) :: kmethd, ptype character(len=20) :: kmethd, ptype
character(len=5) :: afmt character(len=5) :: afmt, pdecoeff
integer(psb_ipk_) :: idim integer(psb_ipk_) :: idim
integer(psb_epk_) :: system_size integer(psb_epk_) :: system_size
@ -703,14 +194,14 @@ program amg_s_pde3d
! Hello world ! Hello world
! !
if (iam == psb_root_) then if (iam == psb_root_) then
write(*,*) 'Welcome to MLD2P4 version: ',amg_version_string_ write(*,*) 'Welcome to AMG4PSBLAS version: ',amg_version_string_
write(*,*) 'This is the ',trim(name),' sample program' write(*,*) 'This is the ',trim(name),' sample program'
end if end if
! !
! get parameters ! get parameters
! !
call get_parms(ctxt,afmt,idim,s_choice,p_choice) call get_parms(ctxt,afmt,idim,s_choice,p_choice,pdecoeff)
! !
! allocate and fill in the coefficient matrix, rhs and initial guess ! allocate and fill in the coefficient matrix, rhs and initial guess
@ -718,7 +209,24 @@ program amg_s_pde3d
call psb_barrier(ctxt) call psb_barrier(ctxt)
t1 = psb_wtime() t1 = psb_wtime()
call amg_gen_pde3d(ctxt,idim,a,b,x,desc_a,afmt,info) select case(psb_toupper(trim(pdecoeff)))
case("CONST")
call amg_gen_pde3d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info)
case("EXP")
call amg_gen_pde3d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1_exp,a2_exp,a3_exp,b1_exp,b2_exp,b3_exp,c_exp,g_exp,info)
case("GAUSS")
call amg_gen_pde3d(ctxt,idim,a,b,x,desc_a,afmt,&
& a1_gauss,a2_gauss,a3_gauss,b1_gauss,b2_gauss,b3_gauss,c_gauss,g_gauss,info)
case default
info=psb_err_from_subroutine_
ch_err='amg_gen_pdecoeff'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end select
call psb_barrier(ctxt) call psb_barrier(ctxt)
t2 = psb_wtime() - t1 t2 = psb_wtime() - t1
if(info /= psb_success_) then if(info /= psb_success_) then
@ -728,6 +236,8 @@ program amg_s_pde3d
goto 9999 goto 9999
end if end if
if (iam == psb_root_) &
& write(psb_out_unit,'("PDE Coefficients : ",a)')pdecoeff
if (iam == psb_root_) & if (iam == psb_root_) &
& write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2 & write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) & if (iam == psb_root_) &
@ -897,6 +407,7 @@ program amg_s_pde3d
if (iam == psb_root_) then if (iam == psb_root_) then
write(psb_out_unit,'("Computed solution on ",i8," processors")') np write(psb_out_unit,'("Computed solution on ",i8," processors")') np
write(psb_out_unit,'("Linear system size : ",i12)') system_size write(psb_out_unit,'("Linear system size : ",i12)') system_size
write(psb_out_unit,'("PDE Coefficients : ",a)') trim(pdecoeff)
write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd) write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd)
write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr) write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr)
write(psb_out_unit,'("Iterations to convergence : ",i12)') iter write(psb_out_unit,'("Iterations to convergence : ",i12)') iter
@ -945,7 +456,7 @@ contains
! !
! get iteration parameters from standard input ! get iteration parameters from standard input
! !
subroutine get_parms(ctxt,afmt,idim,solve,prec) subroutine get_parms(ctxt,afmt,idim,solve,prec,pdecoeff)
implicit none implicit none
@ -954,6 +465,7 @@ contains
character(len=*) :: afmt character(len=*) :: afmt
type(solverdata) :: solve type(solverdata) :: solve
type(precdata) :: prec type(precdata) :: prec
character(len=*) :: pdecoeff
integer(psb_ipk_) :: iam, nm, np, inp_unit integer(psb_ipk_) :: iam, nm, np, inp_unit
character(len=1024) :: filename character(len=1024) :: filename
@ -978,6 +490,7 @@ contains
! !
call read_data(afmt,inp_unit) ! matrix storage format call read_data(afmt,inp_unit) ! matrix storage format
call read_data(idim,inp_unit) ! Discretization grid size call read_data(idim,inp_unit) ! Discretization grid size
call read_data(pdecoeff,inp_unit) ! PDE Coefficients
! Krylov solver data ! Krylov solver data
call read_data(solve%kmethd,inp_unit) ! Krylov solver call read_data(solve%kmethd,inp_unit) ! Krylov solver
call read_data(solve%istopc,inp_unit) ! stopping criterion call read_data(solve%istopc,inp_unit) ! stopping criterion
@ -1039,6 +552,7 @@ contains
call psb_bcast(ctxt,afmt) call psb_bcast(ctxt,afmt)
call psb_bcast(ctxt,idim) call psb_bcast(ctxt,idim)
call psb_bcast(ctxt,pdecoeff)
call psb_bcast(ctxt,solve%kmethd) call psb_bcast(ctxt,solve%kmethd)
call psb_bcast(ctxt,solve%istopc) call psb_bcast(ctxt,solve%istopc)

@ -0,0 +1,65 @@
module amg_s_pde3d_base_mod
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_), save, private :: epsilon=sone/80
contains
subroutine pde_set_parm(dat)
real(psb_spk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1(x,y,z)
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y,z
b1=sone/sqrt(3.0_psb_spk_)
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y,z
b2=sone/sqrt(3.0_psb_spk_)
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_) :: b3
real(psb_spk_), intent(in) :: x,y,z
b3=sone/sqrt(3.0_psb_spk_)
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y,z
c=szero
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y,z
a1=epsilon
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y,z
a2=epsilon
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a3
real(psb_spk_), intent(in) :: x,y,z
a3=epsilon
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y,z
g = szero
if (x == sone) then
g = sone
else if (x == szero) then
g = sone
end if
end function g
end module amg_s_pde3d_base_mod

@ -0,0 +1,65 @@
module amg_s_pde3d_exp_mod
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_), save, private :: epsilon=sone/160
contains
subroutine pde_set_parm(dat)
real(psb_spk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_exp(x,y,z)
use psb_base_mod, only : psb_spk_, szero
real(psb_spk_) :: b1_exp
real(psb_spk_), intent(in) :: x,y,z
b1_exp=szero/sqrt(3.0_psb_spk_)
end function b1_exp
function b2_exp(x,y,z)
use psb_base_mod, only : psb_spk_, szero
real(psb_spk_) :: b2_exp
real(psb_spk_), intent(in) :: x,y,z
b2_exp=szero/sqrt(3.0_psb_spk_)
end function b2_exp
function b3_exp(x,y,z)
use psb_base_mod, only : psb_spk_, szero
real(psb_spk_) :: b3_exp
real(psb_spk_), intent(in) :: x,y,z
b3_exp=szero/sqrt(3.0_psb_spk_)
end function b3_exp
function c_exp(x,y,z)
use psb_base_mod, only : psb_spk_, szero
real(psb_spk_) :: c_exp
real(psb_spk_), intent(in) :: x,y,z
c_exp=szero
end function c_exp
function a1_exp(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1_exp
real(psb_spk_), intent(in) :: x,y,z
a1_exp=epsilon*exp(-(x+y+z))
end function a1_exp
function a2_exp(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2_exp
real(psb_spk_), intent(in) :: x,y,z
a2_exp=epsilon*exp(-(x+y+z))
end function a2_exp
function a3_exp(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a3_exp
real(psb_spk_), intent(in) :: x,y,z
a3_exp=epsilon*exp(-(x+y+z))
end function a3_exp
function g_exp(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: g_exp
real(psb_spk_), intent(in) :: x,y,z
g_exp = szero
if (x == sone) then
g_exp = sone
else if (x == szero) then
g_exp = sone
end if
end function g_exp
end module amg_s_pde3d_exp_mod

@ -0,0 +1,65 @@
module amg_s_pde3d_gauss_mod
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_), save, private :: epsilon=sone/80
contains
subroutine pde_set_parm(dat)
real(psb_spk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_gauss(x,y,z)
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_) :: b1_gauss
real(psb_spk_), intent(in) :: x,y,z
b1_gauss=sone/sqrt(3.0_psb_spk_)-2*x*exp(-(x**2+y**2+z**2))
end function b1_gauss
function b2_gauss(x,y,z)
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_) :: b2_gauss
real(psb_spk_), intent(in) :: x,y,z
b2_gauss=sone/sqrt(3.0_psb_spk_)-2*y*exp(-(x**2+y**2+z**2))
end function b2_gauss
function b3_gauss(x,y,z)
use psb_base_mod, only : psb_spk_, sone
real(psb_spk_) :: b3_gauss
real(psb_spk_), intent(in) :: x,y,z
b3_gauss=sone/sqrt(3.0_psb_spk_)-2*z*exp(-(x**2+y**2+z**2))
end function b3_gauss
function c_gauss(x,y,z)
use psb_base_mod, only : psb_spk_, szero
real(psb_spk_) :: c_gauss
real(psb_spk_), intent(in) :: x,y,z
c=szero
end function c_gauss
function a1_gauss(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1_gauss
real(psb_spk_), intent(in) :: x,y,z
a1_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a1_gauss
function a2_gauss(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2_gauss
real(psb_spk_), intent(in) :: x,y,z
a2_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a2_gauss
function a3_gauss(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a3_gauss
real(psb_spk_), intent(in) :: x,y,z
a3_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a3_gauss
function g_gauss(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
real(psb_spk_) :: g_gauss
real(psb_spk_), intent(in) :: x,y,z
g_gauss = szero
if (x == sone) then
g_gauss = sone
else if (x == szero) then
g_gauss = sone
end if
end function g_gauss
end module amg_s_pde3d_gauss_mod

@ -1,6 +1,7 @@
%%%%%%%%%%% General arguments % Lines starting with % are ignored. %%%%%%%%%%% General arguments % Lines starting with % are ignored.
CSR ! Storage format CSR COO JAD CSR ! Storage format CSR COO JAD
0200 ! IDIM; domain size. Linear system size is IDIM**2 0200 ! IDIM; domain size. Linear system size is IDIM**2
CONST ! PDECOEFF: CONST, EXP, BOX Coefficients of the PDE
CG ! Iterative method: BiCGSTAB BiCGSTABL BiCG CG CGS FCG GCR RGMRES CG ! Iterative method: BiCGSTAB BiCGSTABL BiCG CG CGS FCG GCR RGMRES
2 ! ISTOPC 2 ! ISTOPC
00500 ! ITMAX 00500 ! ITMAX

@ -1,6 +1,7 @@
%%%%%%%%%%% General arguments % Lines starting with % are ignored. %%%%%%%%%%% General arguments % Lines starting with % are ignored.
CSR ! Storage format CSR COO JAD CSR ! Storage format CSR COO JAD
0080 ! IDIM; domain size. Linear system size is IDIM**3 0080 ! IDIM; domain size. Linear system size is IDIM**3
CONST ! PDECOEFF: CONST, EXP, GAUSS Coefficients of the PDE
BICGSTAB ! Iterative method: BiCGSTAB BiCGSTABL BiCG CG CGS FCG GCR RGMRES BICGSTAB ! Iterative method: BiCGSTAB BiCGSTABL BiCG CG CGS FCG GCR RGMRES
2 ! ISTOPC 2 ! ISTOPC
00500 ! ITMAX 00500 ! ITMAX

Loading…
Cancel
Save