@ -468,7 +468,7 @@ the parameter \texttt{ilev}.} \\
& Any integer \par number $ > 0 $
& Any integer \par number $ > 0 $
& 10
& 10
& Number of sweeps when \fortinline |JACOBI|, \fortinline |GS| or \fortinline |BJAC|
& Number of sweeps when \fortinline |JACOBI|, \fortinline |GS| or \fortinline |BJAC|
is chosen as coarsest-level solver. { \bf Aggiungere criterio di arresto del PCG?} \\ \hline
is chosen as coarsest-level solver.\\ \hline
\fortinline |'COARSE_ FILLIN'| & \fortinline |integer|
\fortinline |'COARSE_ FILLIN'| & \fortinline |integer|
& Any integer \par number $ \ge 0 $
& Any integer \par number $ \ge 0 $
& 0
& 0
@ -481,12 +481,34 @@ the parameter \texttt{ilev}.} \\
& Drop tolerance $ t $ in the ILU($ p,t $ )
& Drop tolerance $ t $ in the ILU($ p,t $ )
factorization and first drop-tolerance for the approximate inverses. \\
factorization and first drop-tolerance for the approximate inverses. \\
\hline
\hline
\multicolumn { 5} { |l|} { { \bfseries Note.} Further options for coarse solvers are contained in Table~\ref { tab:p_ coarse_ 2} .} \\
\multicolumn { 5} { |l|} { For a first use it is suggested to use the default options obtained by simply selecting the solver type.} \\
\hline
\end { tabular}
\end { tabular}
\end { center}
\end { center}
\caption { Parameters defining the coarse-space correction at the coarsest
\caption { Parameters defining the coarse-space correction at the coarsest
level (continued).\label { tab:p_ coarse_ 1} }
level (continued).\label { tab:p_ coarse_ 1} }
\esideways
\esideways
\bsideways
\begin { center}
\begin { tabular} { |p{ 3.9cm} |l|p{ 1.7cm} |p{ 1.7cm} |p{ 8cm} |}
\hline
\fortinline |what| & \textsc { data type} & \fortinline |val| & \textsc { default} &
\textsc { comments} \\ \hline
\fortinline |'BJAC_ STOP'| & \fortinline |character(len=*)| & \fortinline |'FALSE'| \par \fortinline |'TRUE'| & \fortinline |'FALSE'| & Select whether to use a stopping criterion for the Block-Jacobi method used as a coarse solver. \\ \hline
\fortinline |'BJAC_ TRACE'| & \fortinline |character(len=*)| & \fortinline |'FALSE'| \par \fortinline |'TRUE'| & \fortinline |'FALSE'| & Select whether to print a trace for the calculated residual for the Block-Jacobi method used as a coarse solver. \\ \hline
\fortinline |'BJAC_ ITRACE'| & \fortinline |integer| & Any integer $ > 0 $ & -1 & Number of iterations after which a trace is to be printed. \\ \hline
\fortinline |'BJAC_ RESCHECK'|& \fortinline |integer| & Any integer $ > 0 $ & -1 & Number of iterations after which a residual is to be calculated. \\ \hline
\fortinline |'BJAC_ STOPTOL'| & \fortinline |real(kind_ parameter)| & Any real $ < 1 $ & 0 & Tolerance for the stopping criterion on the residual. \\ \hline
\hline
\end { tabular}
\end { center}
\caption { Additional parameters defining the coarse-space correction at the coarsest
level.\label { tab:p_ coarse_ 2} }
\esideways
\bsideways
\bsideways
\begin { center}
\begin { center}
\small
\small
@ -497,16 +519,16 @@ level (continued).\label{tab:p_coarse_1}}
\fortinline |'SMOOTHER_ TYPE'| & \fortinline |character(len=*)|
\fortinline |'SMOOTHER_ TYPE'| & \fortinline |character(len=*)|
& \fortinline |'JACOBI'| \par \fortinline |'GS'| \par \fortinline |'BGS'| \par \fortinline |'BJAC'|
& \fortinline |'JACOBI'| \par \fortinline |'GS'| \par \fortinline |'BGS'| \par \fortinline |'BJAC'|
\par \fortinline |'AS'|
\par \fortinline |'AS'| \par \fortinline |'L1-JACOBI'| \par \fortinline |'L1-BJAC'| \par \fortinline |'L1-FBGS'|
& \fortinline |'FBGS'|
& \fortinline |'FBGS'|
& Type of smoother used in the multilevel preconditioner:
& Type of smoother used in the multilevel preconditioner:
point-Jacobi, hybrid (forward) Gauss-Seidel,
point-Jacobi, hybrid (forward) Gauss-Seidel,
hybrid backward Gauss-Seidel, block-Jacobi, \textbf { $ \ell _ 1 $ -versions?} and
hybrid backward Gauss-Seidel, block-Jacobi, $ \ell _ 1 $ -Jacobi, $ \ell _ 1 $ --hybrid (forward) Gauss-Seidel, $ \ell _ 1 $ -point-Jacobi and
Additive Schwarz. \par
Additive Schwarz. \par
It is ignored by one-level preconditioners. \\ \hline
It is ignored by one-level preconditioners. \\ \hline
\fortinline |'SUB_ SOLVE'| & \fortinline |character(len=*)|
\fortinline |'SUB_ SOLVE'| & \fortinline |character(len=*)|
& \fortinline |'JACOBI'| \par
& \fortinline |'JACOBI'|
\fortinline |'GS'| \par \ texttt{ 'BGS'} \par \fortinline |'ILU'| \par
\fortinline |'GS'| \par \ fortinline|'BGS'| \par \fortinline |'ILU'| \par
\fortinline |'ILUT'| \par \fortinline |'MILU'| \par
\fortinline |'ILUT'| \par \fortinline |'MILU'| \par
\par \fortinline |'MUMPS'| \par
\par \fortinline |'MUMPS'| \par
\fortinline |'SLU'| \par \fortinline |'UMF'|
\fortinline |'SLU'| \par \fortinline |'UMF'|
@ -515,7 +537,6 @@ level (continued).\label{tab:p_coarse_1}}
of multilevel preconditioners, respectively \par
of multilevel preconditioners, respectively \par
\texttt { ILU} for block-Jacobi and Additive Schwarz
\texttt { ILU} for block-Jacobi and Additive Schwarz
one-level preconditioners
one-level preconditioners
\textbf { $ \ell _ 1 $ -versions?}
& The local solver to be used with the smoother or one-level
& The local solver to be used with the smoother or one-level
preconditioner (see Remark~2, page~24): point-Jacobi,
preconditioner (see Remark~2, page~24): point-Jacobi,
hybrid (forward) Gauss-Seidel, hybrid backward
hybrid (forward) Gauss-Seidel, hybrid backward
@ -536,7 +557,7 @@ level (continued).\label{tab:p_coarse_1}}
& Number of sweeps of the smoother or one-level preconditioner.
& Number of sweeps of the smoother or one-level preconditioner.
In the multilevel case, no pre-smother or
In the multilevel case, no pre-smother or
post-smoother is used if this parameter is set to 0
post-smoother is used if this parameter is set to 0
together with \fortinline |pos='PRE'| or \fortinline |pos='POST|,
together with \fortinline |pos='PRE'| or \fortinline |pos='POST' |,
respectively. \\ \hline
respectively. \\ \hline
\fortinline |'SUB_ OVR'| & \fortinline |integer|
\fortinline |'SUB_ OVR'| & \fortinline |integer|
& Any integer \par number~$ \ge 0 $
& Any integer \par number~$ \ge 0 $