|
|
@ -274,20 +274,30 @@ class="small-caps">r</span></span> </td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-2-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-2-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-2-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-2-1"
|
|
|
|
class="td11">No preconditioner </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-2"
|
|
|
|
class="td11">No preconditioner </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-2"
|
|
|
|
class="td11"><!--l. 62--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 62--><p class="noindent" ><span class="lstinline"></span><span
|
|
|
|
class="cmtt-10x-x-109">’NONE’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-3"
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">NONE</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-3"
|
|
|
|
class="td11"><!--l. 62--><p class="noindent" >Considered to use the PSBLAS Krylov
|
|
|
|
class="td11"><!--l. 62--><p class="noindent" >Considered to use the PSBLAS Krylov
|
|
|
|
solvers with no preconditioner. </td>
|
|
|
|
solvers with no preconditioner. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-3-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-3-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-3-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-3-1"
|
|
|
|
class="td11">Diagonal </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-2"
|
|
|
|
class="td11">Diagonal </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-2"
|
|
|
|
class="td11"><!--l. 64--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 64--><p class="noindent" ><span class="lstinline"></span><span
|
|
|
|
class="cmtt-10x-x-109">’DIAG’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">DIAG</span><span
|
|
|
|
class="cmtt-10x-x-109">’JACOBI’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’</span>,
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
<span class="lstinline"></span><span
|
|
|
|
class="cmtt-10x-x-109">’L1-JACOBI’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-3"
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">JACOBI</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span>,
|
|
|
|
|
|
|
|
<span class="lstinline"></span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">L1</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">-</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">JACOBI</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-3"
|
|
|
|
class="td11"><!--l. 64--><p class="noindent" >Diagonal preconditioner. For any zero
|
|
|
|
class="td11"><!--l. 64--><p class="noindent" >Diagonal preconditioner. For any zero
|
|
|
|
diagonal entry of the matrix to be
|
|
|
|
diagonal entry of the matrix to be
|
|
|
|
preconditioned, the corresponding entry
|
|
|
|
preconditioned, the corresponding entry
|
|
|
@ -296,10 +306,16 @@ of the preconditioner is set to 1. </td>
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-4-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-4-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-4-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-4-1"
|
|
|
|
class="td11">Gauss-Seidel </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-2"
|
|
|
|
class="td11">Gauss-Seidel </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-2"
|
|
|
|
class="td11"><!--l. 67--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 67--><p class="noindent" ><span class="lstinline"></span><span
|
|
|
|
class="cmtt-10x-x-109">’GS’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">GS</span><span
|
|
|
|
class="cmtt-10x-x-109">’L1-GS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-3"
|
|
|
|
class="cmtt-10x-x-109">’</span>,
|
|
|
|
|
|
|
|
<span class="lstinline"></span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">L1</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">-</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">GS</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-3"
|
|
|
|
class="td11"><!--l. 67--><p class="noindent" >Hybrid Gauss-Seidel (forward), that is,
|
|
|
|
class="td11"><!--l. 67--><p class="noindent" >Hybrid Gauss-Seidel (forward), that is,
|
|
|
|
global block Jacobi with Gauss-Seidel as
|
|
|
|
global block Jacobi with Gauss-Seidel as
|
|
|
|
local solver. </td>
|
|
|
|
local solver. </td>
|
|
|
@ -307,10 +323,16 @@ local solver. </td>
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-5-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-5-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-5-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-5-1"
|
|
|
|
class="td11">Symmetrized Gauss-Seidel</td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-2"
|
|
|
|
class="td11">Symmetrized Gauss-Seidel</td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-2"
|
|
|
|
class="td11"><!--l. 70--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 70--><p class="noindent" ><span class="lstinline"></span><span
|
|
|
|
class="cmtt-10x-x-109">’FBGS’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">FBGS</span><span
|
|
|
|
class="cmtt-10x-x-109">’L1-FBGS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-3"
|
|
|
|
class="cmtt-10x-x-109">’</span>,
|
|
|
|
|
|
|
|
<span class="lstinline"></span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">L1</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">-</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">FBGS</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-3"
|
|
|
|
class="td11"><!--l. 70--><p class="noindent" >Symmetrized hybrid Gauss-Seidel, that
|
|
|
|
class="td11"><!--l. 70--><p class="noindent" >Symmetrized hybrid Gauss-Seidel, that
|
|
|
|
is, forward Gauss-Seidel followed by
|
|
|
|
is, forward Gauss-Seidel followed by
|
|
|
|
backward Gauss-Seidel. </td>
|
|
|
|
backward Gauss-Seidel. </td>
|
|
|
@ -318,26 +340,36 @@ backward Gauss-Seidel. </td>
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-6-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-6-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-6-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-6-1"
|
|
|
|
class="td11">Block Jacobi </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-2"
|
|
|
|
class="td11">Block Jacobi </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-2"
|
|
|
|
class="td11"><!--l. 73--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 73--><p class="noindent" ><span class="lstinline"></span><span
|
|
|
|
class="cmtt-10x-x-109">’BJAC’</span></span></span>,
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
<span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="cmtt-10x-x-109">BJAC</span><span
|
|
|
|
class="cmtt-10x-x-109">’L1-BJAC’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-3"
|
|
|
|
class="cmtt-10x-x-109">’</span>,
|
|
|
|
|
|
|
|
<span class="lstinline"></span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">L1</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">-</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">BJAC</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-3"
|
|
|
|
class="td11"><!--l. 73--><p class="noindent" >Block-Jacobi with ILU(0) on the local
|
|
|
|
class="td11"><!--l. 73--><p class="noindent" >Block-Jacobi with ILU(0) on the local
|
|
|
|
blocks. </td>
|
|
|
|
blocks. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-7-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-7-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-7-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-7-1"
|
|
|
|
class="td11">Additive Schwarz </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-2"
|
|
|
|
class="td11">Additive Schwarz </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-2"
|
|
|
|
class="td11"><!--l. 74--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 74--><p class="noindent" ><span class="lstinline"></span><span
|
|
|
|
class="cmtt-10x-x-109">’AS’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-3"
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">AS</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-3"
|
|
|
|
class="td11"><!--l. 74--><p class="noindent" >Additive Schwarz (AS), with overlap 1
|
|
|
|
class="td11"><!--l. 74--><p class="noindent" >Additive Schwarz (AS), with overlap 1
|
|
|
|
and ILU(0) on the local blocks. </td>
|
|
|
|
and ILU(0) on the local blocks. </td>
|
|
|
|
</tr><tr
|
|
|
|
</tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-8-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-8-1"
|
|
|
|
style="vertical-align:baseline;" id="TBL-1-8-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-8-1"
|
|
|
|
class="td11">Multilevel </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-2"
|
|
|
|
class="td11">Multilevel </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-2"
|
|
|
|
class="td11"><!--l. 76--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
|
|
|
|
class="td11"><!--l. 76--><p class="noindent" ><span class="lstinline"></span><span
|
|
|
|
class="cmtt-10x-x-109">’ML’</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-3"
|
|
|
|
class="cmtt-10x-x-109">’</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">ML</span><span
|
|
|
|
|
|
|
|
class="cmtt-10x-x-109">’</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-3"
|
|
|
|
class="td11"><!--l. 76--><p class="noindent" >V-cycle with one hybrid
|
|
|
|
class="td11"><!--l. 76--><p class="noindent" >V-cycle with one hybrid
|
|
|
|
forward Gauss-Seidel (GS) sweep as
|
|
|
|
forward Gauss-Seidel (GS) sweep as
|
|
|
|
pre-smoother and one hybrid backward
|
|
|
|
pre-smoother and one hybrid backward
|
|
|
|